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ABSTRACT 
The simplified linguistic relation between syntax and semantics as intrinsic property of 
classic Arabic motivates a dedicated look at P vs. NP in light of efforts and solutions 
presented by ancient Arab- and Muslim scholars to facilitate logical- and mathematical 
deduction. In Islamic Jurisprudence (Fikh) it has recently been shown [Abdelwahab et 
al. 2014] that if a formal system expressing Fikh is chosen in such a way that it is both, 
logically complete and decidable, the question of a complete and consistent legislation 
is decidable. If this formal Fikh-system is additionally chosen to be at least as 
expressive as propositional logic, the deduction of detailed sentences is efficient while 
the deduction of general rules is NP-complete. Further investigation reveals that ancient 
scholars adopted a very efficient approach for checking the validity of assertions with 
regard to both, language and logical argument which was mainly characterized by the 
extensive use of syntactical patterns already existent in input-variables. Accordingly, 
the structure of input-variables in 3-SAT-problems is investigated. The discovered 
variable-structure divides 3-SAT-formulas into three interrelated types of which one 
enables efficient pattern-oriented procedures. A novel 3-SAT-solver technique is 
introduced which binds the resolution of 3-SAT-formulas to the construction of FBDDs 
using the newly proposed pattern procedures. Finally, both 3-SAT and the question of 
finding 2-approximation algorithms for MinFBDD (the problem of minimizing FBDDs) 
are addressed. Positive results are reported for both questions. A practically important 
consequence is the ability to construct near to minimal FBDDs with a polynomial 
number of nodes for all Boolean functions expressed in a compact way. Eventually, an 
application of this new 3-SAT-solver is shown to enable polynomial upper bounds of 
the number of nodes in FBDDs constructed for finite projective planes problems 
overhauling the currently known exponential lower bounds. 
 
Keywords: algorithm, Khwarizmi, Al-Ghazali, Islam, algebra, Islamic law, Islamic 
jurisprudence, Fiqh, logic, syntax, semantics, complexity, decidability, SAT, NP 

 
 

INTRODUCTION 

How fast can two numbers be 
multiplied? 
The answer to this question is different 
from the rather classical question: How 
fast can two numbers be multiplied in a 
universal way? While the latter 

currently is O(nlog n 2O(log*n)) for n-digit 
numbers via Fürer's algorithm, where 
log*n represents what is called the 
iterated logarithm operation, the former 
depends on the structure numbers can 
reveal. If, e.g., the two factors belong to 
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the Set {10i | i>0}, an optimal algorithm 
would simply append all zeros of one of 
them to those of the other performing 
this operation in just O(n). Such an 
algorithm expects clues in its input-
variables - depending only on the 
syntactical form of the input - to yield 
an efficient solution1. 
In what follows we shall call this type 
of algorithms pattern-oriented (AP). In 
contrast, a universal algorithm (AU) 
shall be a procedure where input-
variables are not assumed to possess 
any structural information serving to 
reduce complexity2. 
 

Can AP substitute AU? 
 

The above example of multiplication 
doesn’t seem to make the case since 
arbitrary numbers are not necessarily of 
a form similar to {10i | i>0}. 
Since algorithms are not necessarily 
about numbers, let us take a look at 
those used in other domains such as 
Natural Language Processing (NLP) 
determining the meaning of an English 
word. A simple AU searches in a pre-
arranged lexicon which stores meanings 
for all admissible syntactical forms as 
well as other useful information. For 
such an AU, "admissible" simply means 
existent in a pre-defined list. Consider 
on the other hand the problem of 
determining the meaning of a word in 
the classical Arabic language. We could 
apply the former AU to solve this 
problem. We could also write an AP 
which makes use of an intrinsic 
property of Arabic, namely that the 
morphology of words is based on 
"roots" which represent semantic 
categories. In Arabic, e.g., the root of 
"write" has the form k-t-b where terms 
                                                 
1 An efficient solution always implies a 
complexity within P. 
2 There are many other aspects of universality 
which may serve as a basis for different 
definitions of universal algorithm. 

are completed by supplemental vowels 
and additional consonants, e.g., kitāb 
"book", kutub "books", kātib "writer", 
kuttāb "writers", kataba "he wrote", 
yaktubu "he writes", etc. 
Sometimes, morphological rules are 
applied and letters are either 
transformed to others or deleted. 
The root for "water" for example is 
mauh but it is written and pronounced 
mā’. Syntactic forms of nouns and 
verbs are both, well defined and easily 
distinguishable. According to an 
unproven but commonly accepted 
conjecture among ancient Arab 
linguists, this specific word structure as 
well as morphological rules associated 
with it helps avoiding ambiguous 
meanings and enable very compact 
word-lexica [Abdelwahab 1986]. 
Evidently, such an AP would be 
equivalent to AU.  
Turning our attention to the problem of 
finding the semantics of whole 
sentences in English, the required AU 
becomes much more complex and 
assuming that AU uses LFG (Lexical-
Functional Grammar), word-problems 
for LFGs are known to be NP-hard 
[Berwick 1982]. 
LFG views language as being made up 
by multiple dimensions of structure3. 
Each of these dimensions is represented 
as a distinct structure with its own rules, 
concepts, and form. The primary 
structures that have figured in LFG 
research are: 
 

• Representation of grammatical 
functions (f-structure) 

• Structure of syntactic 
constituents (c-structure) 

 

                                                 
3 Lexical functional grammar. (2015, May 26). 
In Wikipedia, The Free Encyclopedia. Retrieved 
11:33, May 11, 2015, from 
https://en.wikipedia.org/w/index.php?title=Lexi
cal_functional_grammar&oldid=664164917 
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This dissociation of syntactic structure 
from predicate argument structures 
(essentially a rejection of Chomsky’s 
Projection Principle4) is crucial to the 
LFG framework. While c-structure 
varies somewhat across languages, the 
f-structure representation, which 
contains all necessary information for 
the semantic interpretation of an 
utterance, is claimed to be universal. 
The lexical entry (or semantic form) 
includes information about the meaning 
of the lexical item, its arguments, and 
the grammatical functions (e.g., subject, 
object, etc.) that are associated with 
those arguments. Grammatical functions 
play an essential role in LFG, however, 
they have no intrinsic significance and 
are located at the interface between the 
lexicon and the syntax. LFG imposes 
the restriction of Direct Syntactic 
Encoding, which prevents any syntactic 
process from altering the initial 
assignment of a grammatical function 
[Neidel 1994]. 
A thorough look into the 3-SAT-
reduction used in the proof of NP-
completeness of LFG word problems 
given in [Berwick 1982] reveals the 
deep reason for the presumable 
intractability: 
"One and the same terminal item can 
have two distinct lexical entries, 
corresponding to distinct lexical 
categorizations; for example, baby can 
be both a noun and a verb. If we had 
picked baby to be a verb, and hence had 
adopted whatever features are 
associated with the verb entry for baby 
to be propagated up the tree, then the 
string that was previously well-formed, 
"the baby is kissing John", would now 
be considered deviant. If a string is ill-
formed under all possible derivation 
trees and assignments of features from 
                                                 
4 Under the Projection Principle, the properties 
of lexical items must be preserved while 
generating the phrase structure of a sentence. 

possible lexical categorizations, then 
that string is not in the language 
generated by the LFG. The ability to 
have multiple derivation trees and 
lexical categorizations for one and the 
same terminal item plays a crucial role 
in the reduction proof: it is intended to 
capture the satisfiability problem of 
deciding whether to give an atom Xi a 
value of T or F."5 
Considering the same problem in classic 
Arabic, the above AU could be build 
upon LFGs with another very useful 
property of classic Arabic becoming 
apparent: All words used in sentences 
are annotated with signs revealing their 
functions in grammar and meaning6. 
Those signs are called tashkīl7. The 
exercise of using tashkīl as an interface 
between syntax and semantics to deduce 
grammatical structures and intended 
meanings in an Arabic sentence8 is 
called I‘rāb9. The main purpose of I‘rāb 
is to remove semantic ambiguity 
resulting from syntactical similarity10. 
I‘rāb can be an efficient procedure 

                                                 
5 [Berwick 1982] p. 103 
6 This is consensus among of the majority of 
ancient Arabic Linguists of whom Ibn Djinni 
(920-1002) and Sibaweih (765-796) are two 
prominent names. 
7 Arabic diacritics. (2015, July 17). In 
Wikipedia, The Free Encyclopedia. Retrieved 
12:02, July 29, 2015, from 
https://en.wikipedia.org/w/index.php?title=Arab
ic_diacritics&oldid=671851118 
8 An exercise considered to be in the core of 
any Arabic language course. 
9 ʾIʿrab. (2015, July 22). In Wikipedia, The 
Free Encyclopedia. Retrieved 12:03, July 29, 
2015, from  
https://en.wikipedia.org/w/index.php?title=%C
A%BEI%CA%BFrab&oldid=672637105 
10 The meaning of the word I‘rāb is in fact: 
Clarify. Also: I‘rāb has the same root as the 
word: Arab- and ancient linguists believe that 
this is attributed to the fact, that Arabs needed to 
distinguish themselves from people who cannot 
express clearly (all non-Arabs are called: Aājem 
which essentially means "not clear").  
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when it uses predetermined word- and 
sentence structure rules applying them 
directly to syntactical objects of the 
concerned phrase. If, e.g., we have two 
sentences: Naserun yashkuru Allaha (= 
Naser thanks Allah), Nasara Alragulu 
Akhahu (= the man supported his 
brother) the terminal Naser which 
might be - without tashkīl - confused 
between verb and noun can be identified 
using I‘rāb via its tashkīl: "ara" to be a 
verb in the second phrase while it must 
be a noun in the first one because the 
"un" (also called Tanween) is only used 
for nouns11. Ancient Arab- and Muslim 
scholars devised a set of rules for the 
syntactical recognition of the three main 
categories of an Arabic sentence: Noun, 
verb and preposition [Ibn Malek 
1274]12. Deducing grammatical 
functions using I‘rāb is similar to 
deducing c&f-structures in LFGs, the 
difference being that it is guided by 
tashkīl, a purely syntactical attribute of 
words. Thus, an LFG-based algorithm 
doing I‘rāb would be AP. 
According to another ancient 
conjecture, there are subsets of the 
classic Arabic language where a word in 
a sentence is completely disambiguated 
when its tashkīl is known and I‘rāb 
does not need contextual information to 
deduce grammatical functions. The 
proof of this conjecture would imply 

                                                 
11 There are of course few exceptions where 
tashkīl is not sufficient to distinguish between 
verbs and nouns (like in the case of the word: 
"Ahmadu"). Those cases have very 
distinguished lexical as well as grammatical 
categories and can be recognized via contextual 
information. 
12 The first five verses of the beginning of the 
1000 verses long poem describing rules of 
Arabic. Alfiya. (2014, October 16). In 
Wikipedia, The Free Encyclopedia. Retrieved 
16:14, July 29, 2015, from 
https://en.wikipedia.org/w/index.php?title=Alfiy
a&oldid=629819477 

our LFG-AP for this subset of Arabic to 
be efficient13. 
In the past paragraphs we discussed 
examples of applications where AP 
presumably can (e.g., NLP) or cannot 
(e.g., multiplication) be substituted 
without loss of generality (w.l.o.g.) for 
AU. Do we have to go through all 
possible algorithms and all possible 
applications to be able to answer the 
general question of whether an AP can 
always be found and substituted for an 
AU? 

No. 
 

According to complexity theory, it is 
sufficient to show and investigate the 
existence and properties of one single 
AP for any known NP complete 
problem, the prominent candidate being 
the 3-SAT-problem. 3-SAT is the 
problem of finding a satisfying 
assignment for propositional formulas 
having max. three variables in their 
clauses14. It is hence a problem of logic. 
Recognizing computability-related, 
intrinsic properties of classic Arabic 
makes it worthwhile to take a look at 
efforts done by ancient Arab- and 
Muslim scholars to facilitate logical and 
mathematical deduction using syntax-
oriented techniques. 
                                                 
13 Modern approaches to Arabic NLP (like the 
one described in [Attia 2008]) apply linguistic 
theories to modern Arabic which is written and 
spoken today without tashkīl (making therefore 
any classical I‘rāb attempt fruitless). While 
those approaches have certainly practical 
validity, they fail to address the important 
theoretical question: How far can the classical 
Arabic language, written and spoken by ancient, 
genuine Arabic speakers be formalized and thus 
mechanized in a computable way? Such a study 
may not only shed light on intrinsic natural 
Arabic language properties, but also and 
foremost on computability related ones. 
14 Boolean satisfiability problem. (2015, July 
8). In Wikipedia, The Free Encyclopedia. 
Retrieved 16:15, July 29, 2015, from 
https://en.wikipedia.org/w/index.php?title=Bool
ean_satisfiability_problem&oldid=670583991 
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It is commonly known that the term 
Algorithm is a Latin short-version of the 
name Muhammad ibn Musa Al-
Khwarizmi (163-235AH / 780-850AD), 
who is the author of the Arabic book 
Kitab Al-Jabr wa-l-Muqabala (215AH / 
830AD) [Al-Khwarizmi], i.e., The 
Compendious Book on Calculation by 
Completion and Balancing. This book 
was translated into Latin in the 12th 
century A.D. entitled Liber Algebrae et 
Almucabola [Chester] with algebrae 
and Almucabola being transliterated 
into Latin from the Arabic title where 
the term Algebra is derived from 
Al-Jabr in the title of Al-Khwarizmi's 
book [Abdelwahab et al.]. 
While there is widespread belief that 
Kitab Al-Jabr wa-l-Muqabala is a 
textbook for mathematics which, among 
others, introduced general rules to solve 
algebraic problems with one variable 
reducible to quadratic equations, it is 
first and foremost a textbook for Fiqh: 
As traditionally and practically done in 
Fiqh, the first half of Kitab Al-Jabr wa-
l-Muqabala introduced the applied 
methodology and term definitions. 
The remaining half of his book solves 
legal questions on trade (commercial 
transactions), geometry (plane surface 
distributions) as well as testimonies. 
Based on the newly introduced 
algebraic method, the by far most 
important part of Kitab Al-Jabr wa-l-
Muqabala deals with Islamic heritage 
law. 
Accordingly, Al-Khwarizmi’s Algebra is 
just what its author says in the 
introduction: "[a] work on algebra, 
confining it to the fine and important 
parts of its calculations, such as people 
constantly require in cases of 
inheritance, legacies, partition, law-
suits, and trade, and in all their dealings 
with one another, or where surveying, 
the digging of canals, geometrical 
computation, and other objects of 

various sorts and kinds are concerned." 
[Al-Khwarizmi] 
His method of solving linear- and 
quadratic equations consisted of first 
reducing the equation to one of six 
standard syntactical forms15.  
Other Muslim scholars working on 
logical deduction, crucial for correct 
application of Fikh-rules, adopted 
Aristotelian syllogisms16 as means of 
reaching correct rulings from right 
premises [AlGhazali 505H]. Syllogisms 
are simple deductive arguments 
depending largely on properties of 
terms used in logical assertions which 
can also be checked in efficient 
syntactical ways17. The completeness of 
various formulations of syllogistic logic 
has been demonstrated in [Lukasiewicz 
1951]. Although syllogistic systems 
provide some quantification properties, 
                                                 
15 where b and c are positive integers: (ax2=bx), 
(ax2=c), (bx=c), (ax2+bx=c), (ax2+c=bx), 
(bx+c=ax2) 
16 Syllogism. (2015, July 1). In Wikipedia, The 
Free Encyclopedia. Retrieved 16:25, July 29, 
2015, from 
https://en.wikipedia.org/w/index.php?title=Syllo
gism&oldid=669410736 
17 To be considered valid, a syllogism must 
follow six basic rules. 
A syllogism must contain exactly three terms. 
The violation of this rule is called the fallacy of 
four terms. 
A syllogism must have exactly three 
propositions. 
The middle term must be distributed at least one 
time. Violating this rule results in the fallacy of 
the undistributed middle. (When checking for 
this and the next rule, it is useful to mark the 
distribution of every term in the syllogism.) 
No term that is undistributed in the premise may 
be distributed in the conclusion. The violation 
of this rule is either the fallacy of the illicit 
major or the fallacy of the illicit minor 
depending on whether the minor or major term 
contains the fallacy. 
A syllogism cannot have two negative premises. 
If a syllogism contains a negative premise, the 
conclusion must be negative; conversely, if it 
contains a negative conclusion, it must contain a 
negative premise. 
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there is a lack of predicates which have 
arity more than one as well as the 
possibility to consider functions. Thus, 
they can be seen as subsystems of 
Monadic First-Order logic (MFO), 
which is also less expressive than full 
FOL. It has recently been shown 
[Abdelwahab et al. 2014] that if a 
formal system expressing Fikh is 
chosen in such a way that it is both 
logically complete and decidable, the 
question of a complete18 and 
consistent19 legislation is decidable20. If 
this formal Fikh-system is additionally 
chosen to be at least as expressive as 
propositional logic, the deduction of 
detailed sentences is efficient while the 
deduction of general rules is NP-
complete. 
Summarizing the above quick look into 
ancient Arab- and Muslim scholars 
efforts it appears that they adopted a 
highly efficient approach of finding 
validity of assertions in both, language 
and logical argumentation which was 
characterized by the extensive use of 
syntactical patterns already existent in 
input variables simplifying solutions of 
otherwise hard problems (i.e., 
essentially finding and applying AP 
instead of AU).  
 

Does this approach work for 3-SAT? 
 

An affirmative answer to this question 
follows these steps: 
Identify structure in logical variables, 
similar to the case of tashkīl, linking 
syntax to semantics of 3-SAT-formulas 
(materialized in the combinatory space, 

                                                 
18 Complete Legislation means that every Fikh-
question has a ruling (verdict) 
19 Consistent Legislation means that every 
verdict has a reason 
20 It is still an open research question whether 
using syllogistic approaches for modern, 
automatic Fikh-systems is a more appropriate 
way to define efficient Fikh-algorithms or not 

i.e., the truth table).21 This identification 
reveals a distinct pattern property of 
variables as opposed to the classic 
container property. Having identified 
this pattern structure, different classes 
of 3-SAT-formulas appear to be 
distinguishable. One of them can be 
efficiently implemented in a 
constructive AP. 
This AP must be formalized, optimized, 
and its properties studied and proven. It 
should also be clear that the AP has 
general validity and can indeed be used 
as a substitute for known AU in any 
instance of the 3-SAT-problem. 
Eventually, algorithmic transformations 
yield an application showing validity of 
the new results. 
To transparently demonstrate the step-
wise arguments, the following 
organization of this paper is chosen: 
Section I: Two experiments are 
conducted in an informal way 
presenting 3-SAT-problem instances 
and Binary Decision Diagrams (BDDs) 
used to solve them with intrinsic 
structure unveiling self-evidently. 
Eventually, a precise conjecture and an 
objective are formulated. 
Section II: The main formalism is 
presented. In the center of this 

                                                 
21The reader is reminded that the beginning of 
last century was marked by many thorough 
investigations related to variables used in 
logical statements. In fact, most fundamental 
ideas about arithmetic were bound to ways of 
viewing and using variables, e.g., Russell's 
famous letter to Frege showing that Frege's 
Basic Law V entails a contradiction. This 
argument has come to be known as Russell's 
paradox described more thoroughly in Principia 
Mathematica [Russell 1910] as being caused by 
the concept of a "true-variable" (German: echte 
Veränderliche) which is an entity defined to be 
ranging over a totality of entities to which it 
belongs itself. In his simple type-theory, the 
basis for all constructive approaches in modern 
computer science, free variables - in defining 
formulas - range over entities to which the 
collection to be defined does not belong. 
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formalism a defined AP is shown to 
possess 10 properties which are used in 
lemmas showing different behavior of 
multiple versions of it. Proofs leverage 
either straightforward induction or proof 
by contradiction. The unveiled variable 
structure is also shown to divide 3-SAT-
formulas into three interrelated types of 
which only one produces efficient 
results with the AP. Lemmas pertaining 
to constructive properties and efficiency 
of the chosen optimized version of AP 
enable main theorems (Theorems 1&2) 
and support the correctness of the 
proposed conjecture and realization of 
the objective. 
Section III: Discusses the problem of 
constructing a FBDD to identify 
blocking sets in finite projective 
planes22 where an application of the 
new AP is shown to overcome known 
exponential lower bounds. 
This is achieved by showing that the 
assumed problem structure in the 
proof(s) of the exponential lower 
bound(s) is resolved if a 3-SAT-Solver 
using AP is put into action (Theorem 3). 
The result is a polynomial upper bound 
in the number of points/lines of the 
projective planes instance. 
The appendix contains exhibits of AP-
runs and extracts from final results for 
Projective Planes of order 2 (Fano 
Planes) and of order 3. 
 
I) EXPERIMENTS, CONJECTURE, 
AND OBJECTIVE 
In what follows we are going to 
informally introduce a new way of 
visualizing variables/literals in 3-SAT-
CNF Clause-Sets and explain known 
phenomena with its help.  

                                                 
22 Blocking set. (2015, February 18). In 
Wikipedia, The Free Encyclopedia. Retrieved 
18:14, July 29, 2015, from 
https://en.wikipedia.org/w/index.php?title=Bloc
king_set&oldid=647680966 

Specifically, a variable is usually 
considered to be a universal container 
of data, i.e.: 
 

"[…] a storage location paired with an 
associated symbolic name (an 
identifier), which contains some 
known or unknown quantity of 
information referred to as a value. The 
variable name is the usual way to 
reference the stored value; this 
separation of name and content allows 
the name to be used independently of 
the exact information it represents."23 

 

With reference to above container 
nature of variables theoretically 
enabling unrestricted and/or 
unstructured substitution of domain 
values contained therein, we call this 
classical way of considering variables 
the container-view.  
In contrast, this paper shows a variable, 
especially a logical one, to possess an 
intrinsic pattern revealing the canonical 
distribution of its truth-values, hereafter 
referred to as pattern-view. 
The Clause-Sets used in this section are 
very simple yet sufficient to show the 
desired properties of variables and 
provide with clues to more elaborate 
thoughts. The end of this section is 
marked by a conjecture and an 
objective. They shall both constitute the 
motivation behind the remainder of this 
paper. 
 

Experiment I: State-of-the-Art 
Suppose S={{a,b,c}{x,y,z}} is a 3-
SAT-CNF Clause-Set where 
a<b<c<x<y<z is the variable ordering 
used in its truth table24 (hereafter 
referred to as canonical ordering

                                                 
23 Variable (computer science). (2015, July 23). 
In Wikipedia, The Free Encyclopedia. Retrieved 
07:15, July 27, 2015, from 
https://en.wikipedia.org/w/index.php?title=Vari
able_(computer_science)&oldid=672714656 
24 i.e., a is the leftmost, z the rightmost variable. 
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BDD3 

Below are ways of instantiating S according to four different orderings leading to 
different BDDs25. As can be seen, BDD4 where instantiations did not violate the 
canonical ordering represents a relatively small diagram: 

                                                 
25 We use a formulation of BDDs which allows Clause-Sets instead of single literals/variables to be used 
in nodes. This shall be properly précised in the next sections (c.f. [Wegener 2000]). 

BDD1 

BDD2 
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Does this mean that any instantiation 
procedure following the canonical 
ordering of an arbitrary 3-SAT-CNF 
Clause-Set will possess the smallest 
number of nodes? 
 

No. 
Take a look at the resolution of the 
extension of S: 

S’={{a,b,c}{x,y,z}{a,c,x}}. 
 

The following BDD5 and BDD6 show 
that ordering a<c<b<x<y<z produces a 
BDD with only 7 unique-nodes 
compared to 8 achieved by the 
canonical one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

BDD4 

BDD6 

BDD5 
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How can this be explained? 
First: Using the canonical ordering in 
prioritizing variable instantiations for S 
produces better results than using 
arbitrary ones. 
Second: This very canonical ordering 
fails to produce the best result in the 
extended case S’. 
More generally: How do variable 
orderings affect sizes of BDDs 
constructed while resolving 3-SAT-
CNF clauses?26 
In diverse literature related to subject 
matter this central question is left 
unanswered. The two related problems 
of finding the best variable ordering for 
BDDs (of various types) and finding a 
minimal BDD are both known to be 
NP-complete (c.f. [Bolling et al. 1996], 
[Tani et al. 1993], [Guenther et al. 
1999], and [Sieling 1999]). 
Is there a way to acquire a deeper 
understanding of the nature of variables 
and their orderings in the context of 
resolving 3-SAT-CNF-clauses?  
 

Experiment II: Truth Patterns 
Let S={{x1,x2}{x3,x4}{x0,x5}} be a CNF 
Clause-Set. Then the truth table below 
(TT. 1) can be constructed: 
 

X0 X1 X2 X3 X4 X5 S 
0 0 0 0 0 0 0 
0 0 0 0 0 1 0 
0 0 0 0 1 0 0 
etc. …. … … … … … 
 

Truth Table 1 
 

We shall define the following strings for 
each variable constituting what we call 
a Truth Pattern (TP) for that very 
variable27. Bits in such a string 
represent rows in above table. If the 
                                                 
26 That variable ordering does affect sizes of 
BDDs is undisputed.  
27 Truth Patterns represent the enumeration of 
all possible interpretations of the given Clause-
Set S from the perspective of the given 
variable(s). 

value of the variable in the respective 
row i is 0, the string has in bit i the 
value 0, else it has the value 1. Doing 
this for the six variables in S yields the 
following Set of strings: 
 

SX0 = 32(0) 32(1)28 SX1 = 
2(16(0)16(1))29 SX2 = 4(8(0)8(1)) SX3 
= 8(4(0)4(1)) 
SX4 = 16(2(0)2(1)) SX5 = 32(1(0)1(1)) 

 

Forming the equivalent TPs for clauses 
{x1,x2},{x3,x4},{x0,x5} which contain 
pairs of variables/literals is eventually a 
simple bit-OR operation which shall be 
called PatternOr giving the following 
results: 

S{X1,X2}=PatternOr(SX1, 
SX2)=2(8(0)8(1)16(1))30 
S{X3,X4}=PatternOr(SX3, 
SX4)=8(2(0)2(1)4(1)) 
S{X0,X5}=PatternOr(SX1, 
SX2)=16(1(0)1(1))32(1)31 

 

Let S1= S{X1,X2}, S2= S{X3,X4}, S3= 
S{X0,X5} and let S1’=8(0)8(1), 
S2’=2(0)2(1), S3’=1(0)1(1), then the 
following trees represent the above 
strings: 

 

                                                 
28 This string can be understood as follows: in 
the first 32 rows X0 is 0 and in the second 32 
rows X0 is 1. 
29 Meaning: the pattern 16(0)16(1) is repeated 
twice. 
30 Meaning: a pattern containing 8(0)8(1)16(1) 
is repeated twice. 
31 Meaning: the pattern contains 32(1) to its 
right and 16 times the pattern 1(0)1(1) to its left. 
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TP2 

Resolving those strings/trees in 
sequence amounts to performing a bit-
AND Operation (hereafter referred to as 
PatternAnd) which does not need to be 
applied on similar sub-patterns more 
than once, e.g.: 
 

PatternAnd(2(8(0)8(1)16(1)), 
8(2(0)2(1)4(1))) = 2 x 
PatternAnd(8(0)8(1)16(1), 
4(2(0)2(1)4(1))) etc. 

 

 

Thus, step 1 of this Sequential, Pattern-
oriented Resolution (SPR) shall be 
(TP1): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When {S3} is resolved in step 2 with the 
intermediate tree 2{S1S2} we get the 
following (TP2): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Counting the unique non-leaf-nodes (blue)32 of this resulting tree yields 10. The BDDs 
corresponding to the above patterns generated in steps 1 and 2 look like BDD7 and 
BDD833: 
                                                 
32 Such nodes represent TPs repeating in specific places within the overall pattern {S1S2S3}, e.g.: 
Starting with bit 16 we have sub-pattern: {S1S2}, before that it is: {S1S2S3’}. 
33 BDDs in Experiment 2 differ from BDDs in Experiment 1 in the convention that -ve instantiations of 
literals/variables go through left edges of the respective nodes rather than through right ones. 

TP1 

PatternAnd(                   ,                   )= 
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Now we repeat this exercise starting with S3 instead of S1 in TP3 and TP4 as follows: 
 
 
 
 
 
 
 
 
 
 
 

BDD8 

BDD7 

TP3 

PatternAnd(                                ,                                 )=  
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This new resulting tree TP4 again has 10 nodes. 
Can we get a better result for S={{x1,x2}{x3,x4}{x0,x5}}? Let us try to rename variables 
to form: S’={{x0,x1}{x2,x3}{x4,x5}}. Obviously S=S’. 
 
TPs for the new clauses and their tree representations: 
 
SS{X0,X1}=PatternOr(SSX0, SSX1)=16(0)16(1)32(1) 
SS{X2,X3}=PatternOr(SSX2,SSX3)=4(4(0)4(1)8(1)) 
SS{X4,X5}=PatternOr(SSX4, SSX5)=16(1(0)1(1)2(1)) 
 

 
 

TP4 

& PatternAnd(                                                                            ,                                            )= 
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Now let us apply PatternAnd again: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The corresponding BDDs are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the final result we only count six unique-nodes. How do we explain this? What did 
the renaming operation change? 

BDD9 BDD10 
 

TP4 

PatternAnd(                                      ,                                         )= 
 

& PatternAnd(                                            ,                            )= 
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Conjecture and Objective 
Let's elaborate on the formation of TP2: 

 

 
 
by PatternAnd from  

 and 

 
Note first that the two patterns 2{S1S2} 
and {S3} are 64bits long. S3 has its 
whole right part constituted of 1-valued 
bits while its left part is the pattern 
16{S3’}. 2{S1S2} is basically repeating 
pattern {S1S2} throughout its length. 
{S3} is therefore twice as big as {S1S2}. 
We say that {S3} has a larger Pattern 
Length (PL) than {S1S2}34. This means 
that PatternAnd is going to resolve for 
the left part of the result {S1S2} with 
16{S3’) and for the right part {S1S2} 
with 32(1). The right part will consist of 
{S1S2} while the resolution of the left 
part looks like TP5: 
                                                 
34 Written: PL({S3})>PL({S1S2}) or 
PL({X0,X5})>PL({{X1,X2}{X3,X4}}). 

 
 
 
 
 
 
 
 
 
 
 

Where pattern 2x{S3’} is resolved with 
sub-nodes of {S1S2} and x is adjusted 
according to the respective PLs of the 
involved sub-patterns. Because 
PL({S3})>PL({S1S2}), i.e., the new 
pattern to be resolved with the 
intermediate tree had a larger PL than 
the tree itself, a copy of that tree or parts 
of it, here: {S1S2} had to be included in 
the final result. We say that the 
intermediate tree/node 2{S1S2} has been 
split and we call this type of split N-
split35. Splits are defined more formally 
in next sections and play an important 
role in the development of main ideas of 
this paper. When a split occurs, it 
simply means that a number of new 
nodes is added to the resulting tree 
which is equal to the number of nodes 
of the original tree/sub-tree, thus 
causing a blow-up of the final result. In 
the above example the only N-split 
happening is the one caused by {S3}, 
since for the rest: PL({S3’}) < PL of any 
sub-node in {S1S2}. 
Let us take a look at the second example 
of Experiment 2: When the tree {S3} is 
resolved with 2{S1} a N-split occurs 
between 16{S3’} and {S1} causing the 
formation of pattern 8{S3’} in the first 
step. Then when the intermediate tree is 
resolved with 8{S2}, another N-split 
occurs when pattern 8{S3’} is resolved 
with 2{S2} causing the pattern 2{S3’S2} 
to be formed (TP6): 

                                                 
35 i.e., Node-Split. 

TP2 

TP5 
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The reader may have noticed that when 
we renamed variables in the last 
example of Experiment II, all newly 
resolved patterns had PLs smaller than 
the ones already existing in intermediate 
trees (in the first step for example: 
{SS2} has a PL smaller than any pattern 
in any node of {SS1}). Therefore, no N-
splits occurred during resolution and the 
total number of nodes remained small. 
Note also that all BDDs for the trees 
produced by the SPR-procedure shown 
above have one thing in common: They 
all use the canonical ordering of 
variables. 
Summary of Experiment II: Splits are 
the cause of blow-ups in resolution-
trees of SPR-procedures. N-splits occur 
when a newly resolved truth pattern TP 
has a pattern length PL (in the canonical 
ordering) larger than the PL of the 
corresponding pattern in the node of the 
tree/sub-tree to be resolved with TP. 
Expressing this in terms of BDDs: If in 
an SPR resolution-procedure - which 
uses the canonical ordering as guideline 
for variable instantiations - a clause C to 
be resolved with a node of a tree/sub-
tree T has a leading literal/variable 
whose index/order36 is less than the 
index/order of all or any leading 
literal/variable of clauses in the node of 
T, then an N-split occurs. We can 
reformulate this assertion as a safe-
condition posed on Clause-Sets: 

                                                 
36 Variables/Literals of smaller indices/order 
have longer PLs. 

If ∀S (S = Clause-Set to be resolved in 
an SPR-procedure), ∀Ci, Cj clauses ∈ 
S, i<j: PL(Ci)>PL(Cj), then no N-splits 
occur. This property is elaborated and 
précised formally in Section II. 
Can this explain the trees in Experiment I? 
It obviously applies to the canonical 
ordering case: 
 
 
 
 
 
 
 
 
 
 
 
 
Red ellipses show the result of an N-
split of sub-tree {{x,y,z}{c,x}} which is 
a child of the Clause-Set 
{{b,c}{x,y,z}{c,x}} where indeed 
PL({c,x})>PL({x,y,z}). What happens if 
we attempt renaming? We can rename 
S={{a,b,c}{x,y,z}{a,c,x}} to become: 
S’={{a,b,c}{a,b,x}{x,y,z}}37. 
The following BDD11 is then the final 
result of resolution: 
 
 
 
 
 
 
 
 
 
The number of nodes is reduced as 
expected. Note that the achieved node-
count of seven seems to be the minimal 
as well. 

                                                 
37 The reader is encouraged to verify the 
correctness of this renaming. The renaming 
procedure used here is elaborated and 
formalized in Section II. 

BDD11 

TP6 
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We are ready to propose the following 
conjecture and to formulate the then 
following objective: 
 

Conjecture 
If in an SPR-procedure solving a 
problem P by resolving a 3-SAT-CNF 
Clause-Set S, all generated sub-
problems P’ can be expressed using 
Clause-Sets S’ which have safe-
conditions preventing big splits, then 
the canonical ordering ∏ of variables 
in S is a near-to-optimal ordering 
producing a near-to-minimal BDD for 
P whose number of nodes is polynomial 
in the size of S. In case some sub-
problem P’ produces a Clause-Set S’ 
which is not safe, in this particular 
sense, S’ can be renamed and arranged 
to form a safe Set S’’ which imposes 
another canonical ordering ∏’ on P’ 
resulting - in addition to ∏ - in a BDD 
for P with a polynomial number of 
nodes in the size of S and near-to-
optimal as well.  
 

Objective 
Construct a 3-SAT-CNF-Solver based 
on SPR-procedures using canonical 
orderings and safe-conditions. The 
Solver should be able to generate BDDs 
whose number of unique-nodes is 
polynomial in the length of input-sets. 
 

Despite the conjecture and objective 
being described separately, they 
represent interdependent ways of 
tackling both, the NP-problem and the 
related BDD-minimization-problem 
with SPR-procedures being on center-
stage. The remainder of this section is 
dedicated to the proof-strategy of the 
conjecture and achieving the objective. 
The indicated sequence is not exactly 
the one followed in Section II, but 
enables a consistent overview about the 
argumentation. 
First, SPR-procedures are formalized 
and their generic properties proven: 

A new AP/canonical order-based 
resolution-algorithm (GSPRA) is 
defined binding the BDD construction 
to Clause-Set-instantiation. The only 
variable/literal instantiation rule applied 
by this algorithm (materializing the 
canonical order doctrine) being the 
least-literal/head-clause-rule (Definition 
2). 
The safety condition proposed above is 
elaborated to divide arbitrary 3-SAT 
Clause-Sets into three types: 
 

• linearly ordered 
• linearly ordered, but unsorted 
• almost arbitrary Sets 

 

GSPRA behaves differently for each 
one of those types. For linearly ordered 
Sets it is shown that no ‘big splits’ of 
BDDs can be produced by GSPRA 
during resolution. Big splits refer in this 
work to ones causing exponential 
behavior. Properties of GSPRA or its 
extension GSPRA+ relevant to the 
conjecture include: 
a) The fact that any arbitrary variable 

ordering used in solving a 3-SAT-
problem can always be converted to 
a canonical one using renaming so 
that BDD-minimization is reduced to 
minimization of canonically ordered 
BDDs (Property 9). 

b) The fact that the concept of 
Algorithmic Equivalence38 of nodes 
in BDDs constructed by SPR-
procedures is essentially Syntactical 
Equivalence of their Clause-Sets, 
thus facilitating the efforts to avoid 
redundancies (Property 10). 

c) The fact that BDDs generated by 
GSPRA/GSPRA+ possess always a 
structure which guarantees a minimal 
number of nodes in their top-part. 
(Properties 8, eventually 8’) 
 

                                                 
38 i.e., BDD nodes are only equivalent when all 
their sub-nodes are equivalent as well. 
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Properties of GSPRA/GSPRA+ relevant 
to the objective include: 
a) Expansion Property 2: Stating that in 

constructed BDDs no nodes which 
were not connected in steps <k can 
be connected in steps >=k except in 
trivial cases. 

b) Property 4 then 4’: The only non-
trivial common-nodes created by 
GSPRA/GSPRA+ are elements of a 
fixed Set (called the ACS-Set). 

c) Uniqueness of instantiation results 
(Property 5): Stating that children of 
a Clause-Set are equivalent whenever 
instantiation literals leading to them 
are equivalent as well.  

d) Properties 8, eventually 8’ (same as 
the foregoing). 

 

Second, lemmas related to the 
conjecture are formulated and proven. 
Their interdependencies are shown in 
Fig. 1. 
 

Lemma 14 and 15 show that BDDs 
produced by GSPRA+ are minimal 
compared to those produced by any 
procedure using canonical orderings 
with a.a. and l.o.u Sets (respectively). 
Both lemmas make use of Property 8’. 
Lemma 16 uses Lemma 14 and 15 as 
well as Property 9 to show that GSPRA+ 
produces BDDs which are minimal 
even for procedures using orderings 
other than canonical ones. It also uses 
Property 10 to assert that those BDDs 
are redundancy free. Lemma 17 
provides evidence that BDDs produced 
by GSPRA+ are always near-to-optimal.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Proof-Structure A 
 
 
 
 
 

Lemma 16: 
 

SRTs produced by GSPRA+ for a.a. Sets are both, redundancy 
free and minimal with respect to procedures using a.a. and 
l.o.u. Sets 
 
Lemma 17: 
 

SRTs produced by GSPRA+ for a.a. Sets are always near-to-
optimal 

Property 9: 
 

Generality of 
canonical ordering 

Property 10:  
 

Algorithmic Equivalence 
 = 

Syntactical Equivalence 

Property 8’: 
 

Minimal SRT-structure 

Lemmas 14&15: 
 

SRTs produced by GSPRA+ are 
minimal compared to trees 
produced by any procedures 
using canonical orderings for 
a.a. and l.o.u. Sets 
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Third, lemmas related to the objective are formulated and proven. Their 
interdependencies are shown in Fig. 239: 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Proof-Structure B 

                                                 
39 Proof-Structures provided here are meant to assist critical readers to find flaws in arguments and/or 
conclusions drawn in this paper. 

Lemma 9:  
 

SRTs produced 
by GSPRA+ 
possess at most 
only trivial size 
1 splits 

Lemma 3:  
 

S.o. SRTs 
possess at 
most only 
trivial size 1 
splits 

Lemma 2:  
 

CNs in s.o. Sets cannot be 
split when augmented in size 
using CNALs within an 
instantiation block. Trivial 
CNs can be avoided. 

Lemma 19: 
 

Complexity of FGPRA+ is O(M^9), M number of clauses in an 
arbitrary Clause-Set S which is 3-SAT, CNF 

Lemma 18: 
 

FGPRA+(S)=GSPRA+(S) 
for S arbitrary Clause-Set 

Property 5: 
 

Uniqueness of 
instantiation results 

Lemma 13: 
 

Total number of unique-nodes in the SRT produced 
by GSPRA+ for arbitrary Clause-Sets is O(M^4) 

Lemma 12: 
 

SRTs produced 
for M=1,2 a.a. 
Clause-Sets have 
O(M) unique-
nodes Lemma 8:  

 

Any two nodes 
which are equal 
via some 
mapping have a 
common 
syntactical form 
(CRA-form) 

Property 4’: 
 

The only non-
trivial CNs created 

by GSPRA+ are 
elements of the 

ACS-Set 

Property 8’:  
 

Minimal SRT-
Structure 

Property 2: 
 

Linear Expansion of 
SRTs 
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Lemma 18 shows that the BDDs 
produced by FGPRA+, the algorithm 
which resolves Clause-Sets in parallel, 
are equivalent to those produced by 
GSPRA+. This lemma uses Property 5.  
Lemma 13 is central showing that the 
number of unique-nodes in an SRT 
produced by GSPRA+ for Clause-Sets of 
size M is in O(M4). 
The main observation is that all new 
nodes generated in any step by GSPRA+ 
are only non-trivial common-nodes, i.e., 
members of a fixed Set (Property 4’). It 
uses Lemma 12 in its Base-Case which 
asserts that for M=1,2 the number of 
unique-nodes is in O(M) for a.a. 
Clause-Sets. Lemma 9, the one related 
to existent splits in GSPRA+ products, 
assures that there cannot be big splits in 
a final GSPRA+ tree. This is a 
generalization of the findings in Lemma 
3 which is concerned with s.o. products 
of GSPRA. Lemma 3 in its turn uses 
among other insights the fact that if 
CNs in s.o. Sets are guaranteed not to 
be augmented in size except using 
CNALs, then they won’t split if their 
sized become >1 in any further steps 
within an instantiation block (i.e., when 
they are not supported). Lemma 8 is 
used as well. It states that any two 
Clause-Sets which are equivalent-via-
mapping possess a common syntactical 
form, facilitating thus the process of 
forming common-nodes. Property 8’ is 
also used by this lemma. Lemma 19 
studies complexity of every operation 
used by FGPRA+ assuming that there 
are always O(M4) unique-nodes in a 
final BDD (Lemma 13,18) to find out 
that the overall complexity of FGPRA+ 
is in O(M9). The detailed plan of 
Section II looks like this: 
II A) all concepts discussed above are 
formally defined: 
Definitions 1&2 concern almost 
arbitrary (a.a.), linearly ordered (l.o.) 
and linearly ordered, but unsorted 

(l.o.u.) Clause-Sets and the GSPRA as 
well as tree/graph structures (called 
SRTs) used by it. SRTs are 
generalizations of BDDs binding nodes 
to instantiated Clause-Sets instead of 
single literals. GSPRA implements one 
instantiation rule (called least-
literal/head-clause-rule).  
Definitions 3&4 introduce properties as 
well as special types of SRTs: strongly 
ordered (s.o.) and loosely ordered 
(lo.o.). 
Definition 5 formalizes the concept of a 
common-node (CN) in an SRT showing 
different types of CNs. 
Definition 6 introduces the concept of a 
Dependency Graph (deduced from an 
SRT) which is equivalent to the known 
FBDD. 
Definition 7 formalizes the notion of 
Algorithmic Equivalence of nodes 
which is central in defining minimal 
SRTs40.  
Section II B) introduces Lemma 1,2 and 
Corollary 1 which are mainly concerned 
with the existence and form of CNs in 
s.o. and lo.o. SRTs as well as the 
following intrinsic properties of 
GSPRA: 
Property   1: completeness/truth table 

         equivalence of GSPRA 
Property   2: expansion of SRT 
Property   3: linear derivation of clauses 
Property   4: generation of non-trivial CNs 
Property   5: uniqueness of instantiation results 
Property   6: Syntactical Equivalence 
Property   7: FBDD equivalence, branch 

         linearity 
Property   8: SRT structure 
Property   9: generality of canonical orderings 
Property 10: Algorithmic Equivalence 
                     = Syntactical Equivalence 
                                                 
40 Binding nodes in SRTs to Clause-Sets 
(instead of single literals as in typical BDDs) 
allows minimization efforts to be reduced to 
finding syntactically equivalent Clause-Sets 
instead of fulfilling semantic criteria dependent 
on the nature of the Boolean function on hand 
as is usually the case. 
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II C) studies split conditions in s.o. Sets. 
Lemma 3 demonstrates that "big" splits 
cannot exist indicating already that GSPRA 
procedures working with such Sets are not 
exponential in nature. 
II D) studies renaming algorithms 
CRA/CRA+ and their properties 
(Lemma 4,5,6,7) where termination and 
algorithmic fulfilling of l.o. conditions 
are shown. 
II E) summarizes all ideas in an 
algorithm GSPRA+ which is shown to 
possess many interesting properties, the 
main one being that it produces SRTs 
which are "aligned"41 with a total 
unique-nodes count in O(M4) where M 
is the number of clauses in an arbitrary 
3-SAT-CNF-Set (Lemma 13). Those 
SRTs are shown in Section E-5 to be 
near-to-minimal as well. 
II F) shows a parallel version of the 
same algorithm (FGPRA+) whose 
complexity is in O(M9) concluding 
Section II with a definition of a new 
Solver algorithm and Theorems 1,2 
which prove that P=NP and that 
FGPRA+ is a polynomial 2-
approximation algorithm of MinFBDD, 
the problem of minimizing an FBDD of 
a Boolean function, respectively. 
Theorem 2 shows that Boolean 
functions possess minimal FBDDs 
which have polynomial node-counts (in 
M, the number of clauses used in 
expressing them as 3-SAT-CNF-
formulas). 
 
II) 3-SAT-CNF CLAUSE-SETS AND 
THEIR RESOLUTION 
A) DEFINITIONS 
 

Definition 0: nomenclature 
For a Set S of general 3-SAT-CNF-
clauses of the form: 

                                                 
41 A useful property amounting to making all 
Clause-Sets in an SRT l.o. (formally précised in 
Section E). 

{{a1,b11,c11}{a1,b12,c12}..{a1,b1i,c1i} 
{a2,b21,c21}{a2,b22,c22}..{a2,b2j,c2j}… 
{am,bm1,cm1}{am,bm2,cm2}....{am,bmk,cmk}} 
 

a) LIT (S): is the Set of all unique 
literal names/indices in S 

b) LEFT(x,C)/RIGHT(x,C), x 
literal name/index: Is the Set of 
all literal  names/indices 
occurring in S to the left/right of 
literal x in clause C. 

c) SortOrder(x,S), for x = clause 
and S = Set: Is an integer 
number representing the sort 
order of x with respect to other 
clauses of S.  

d) First literals in any clause are 
called head- while last ones are 
called tail-literals 

e) If C is a 3-SAT-clause, then the 
cardinality of the Set of all 
clauses which are permutations 
of literals in C (called short: 
perm(C)) is called Resolution 
Complexity Coefficient (RCC). 
It is given by the formula: 
RCCk-SAT=kPk+kPk-1+kPk-2….+kP1 
i.e., for 3-SAT 
RCC3-SAT= 3P3 + 3P2 +3P1= 1542 

f) Clauses created through 
instantiations of literals of a 
clause C with TRUE or FALSE 
are called derivations of C. They 
are called linear derivations if 
consecutive instantiations 
respect the linear order of 
literals in C43. 

g) Indices are used to stand for 
literal names (i.e., 1,2, etc. 
instead of x1,x2,..). 

 

                                                 
42 Recall that nPr=n!/(n-r)!  
43 Examples of derivations of clause C={x,y,z} 
for any ordered indices x,y,z are {x,z} and {y,z} 
of which only the latter is a linear derivation. 
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Definition 1: For a Set S of the above 
form, S is called linearly ordered (l.o.)44 
if the following Conditions hold: 
 

a) ∀ai,bij,cij∈Ci+j: ai<bij<cij literal 
names/indices are sorted in 
ascending order within clauses. 

b) S is sorted by ai & bij & cij in 
ascending order taking into 
consideration negation signs45. 
In other words: ∀i,j indices of 
clauses: if i<j then head-literal 
of Cj >= head-literal of Ci. 

c) ∀x ∈  LIT(S), ∀C ∈  S: 
if x not ∈  LEFT(x,C) then 
∀y ∈  LEFT(x,C): x>y 
(all new names/indices of 
literals occurring in a clause C 
of S are strictly greater than all 
the literal names/indices to their 
left). 

d) Clauses appear only once in S. 
 

If S fulfills Conditions a), c), d), but not 
b) it is called linearly ordered, but 
unsorted (abbreviated l.o.u.)46. If S 
fulfills Conditions a), d) only it is called 
almost arbitrary (a.a.)47. Clause-Sets of 
the form: S={{ax,bx1,cx1}{ax,bx2,cx2} .. 
{ax,bxi,,cxi}} are called blocks and are 
referred to by the name of the leading 
literal (in this case S is called ax-block). 
Clauses having ax as leading literal are 
said to belong to the ax-block. 

                                                 
44 This formulation leads to the condition: ∀Ci, 
Cj clauses ∈ S, i<j: PL(Ci)>PL(Cj) proposed in 
Section I for all Clause-Sets S in a resolution-
tree. 
45 i.e., {1,2,3} comes before {1,2,4} and 
{¬1,2,3} before {1,2,3}or vice versa. 
46 Corresponding to the condition: ∃Ci, Cj ∈S, 
i<j: PL(Ci)<PL(Cj) for some Clause-Sets S in a 
resolution-tree. 
47 Corresponding to the condition: ∀Ci, ∃Cj ∈S, 
i<j: PL(Ci)<PL(Cj) for some Clause-Sets S in a 
resolution-tree. 

Definition 2: The Generic Sequential 
Patterns Resolution Algorithm 
(GSPRA) applied on a Set of a.a. 3-
SAT-CNF-clauses S consists of the 
following procedure: 
 

0. Preliminary step: Choose the 
shortest clause Ci of S to be 
instantiated first. Sort S so that 
C0=Ci48.  

1. Take C0 and create the binary tree49: 

 
 
 

 
 
 

 
 

In this binary tree, nodes contain 
Clause-Sets and edges represent truth 
assignments of single literals (called 
instantiations of Clause-Sets and/or 
literals). Branches are lists of nodes 
starting with base 1 until a True- or 
False-leaf. Note: Head-literals such 
as a1,b11, etc. have precedence in 
instantiation over other literals. Also 
note that left edges always represent 
+ve instantiations of head-literals of 
the current clause while right edges 
represent -ve instantiations of the 
same. 

2. Resolve each following clause Ci of 
S with the intermediate resolution-
tree (IRT) created in the previous 
step, which in the beginning is equal 
to the tree shown in T0, as follows: 

                                                 
48 Choice of C0 may be crucial for GSPRA. 
Usually minimization of the number of nodes in 
the top-part of the tree is sought by choosing the 
shortest clause as is done here for the sake of 
illustration. But this doesn't necessarily lead to 
minimal SRTs when unique Clause-Sets are 
considered. In Section E a procedure is 
dedicated for this part of the algorithm. 
49 An example with only +ve literals is used 
(w.l.o.g.). 

T0 
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a) Follow left- then right edges of 
the current IRT-node in a depth 
first way substituting the literal 
written on the edges by TRUE 
and FALSE respectively if it 
exists in Ci. Set Ci’ and Ci’’ to be 
the resulting derivation (Ci’ for the 
left side, Ci’’ for the right side). If 
the literal does not exist in Ci, put 
Ci’=Ci’’=Ci. 

b) Resolve resulting derivations Ci’, 
Ci’’ of step a. with the left- then 
right IRT-nodes (respectively) by 
calling step 2. recursively  

c) If left- or right Clause-Sets of 
current IRT-nodes are TRUE, 
then substitute them with the trees 
for Ci’ or Ci’’ (formed like in 1.)  

d) If left- or right Clause-Sets of 
current IRT nodes are FALSE, 
keep them FALSE 

e) Return the final tree as a result of 
the resolution-procedure. It is 
called Sequential Resolution Tree 
(SRT). This tree can be simplified 
to form a directed graph if 
nodes/leafs have the same Clause-
Sets/values joined together. In the 
remainder of this paper we shall 
call those graphs simply trees or 
SRTs as well. Thus, an SRT is 
(also) a directed, acyclic graph 
<V, E> where V is the Set of all 
Clause-Sets, E the Set of ordered 
pairs <v1,v2> , v1,v2 ∈V 
representing instantiations of 
Clause-Sets having a parent-child 
relationship and produced during 
GSPRA(S). 

3. A node in an SRT is symbolized by 
[x] if the lead clause in its Clause-Set 
is headed by a least-literal x. 
Moreover: x is called the Name 
Literal (NL) of this Clause-Set/node. 

4. As per 2 a): Edges going out of an 
SRT node [x] represent instantiations 

of the NL x of the Clause-Set of that 
node (this fact is called the least-
literal/head-clause-rule). 

5. The Clause-Set in an SRT-root-node 
is called Base Clause-Set of the base-
node of the SRT or simply ‘Base 
Clause-Set’  

6. The rank of a clause is the number of 
literals contained in that clause. Rank 
of a node/Clause-Set in an SRT is an 
integer representing the maximum 
number of literals in any clause in 
the Clause-Set of that node. 

7. The size of a node in an SRT is an 
integer representing the number of 
clauses in the Clause-Set of that 
node.  

8. Nodes of sizes 0 or 1 (TRUE- or 
FALSE-leafs) are called Resolution 
Termination Nodes (RTNs) of the 
SRT. 

9. A variable ordering of a problem p 
(∏p) expressed as a 3-SAT-CNF 
Clause-Set S and resolved by any 
resolution procedure PR is a list of 
integers <i,j,k,…> representing 
indices of literal/variable names 
indicating priorities of instantiations 
of literals/variables of S used by PR. 
If all sub-problems of p have the 
same ordering, subscript p is omitted 
and we call ∏: BDD-ordering. 
If either ∏p or ∏ represent the 
canonical ordering of variables the 
following notation is used: ∏c

p or ∏c. 
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Motivation 1: Example Resolving Monotone, +ve, 2-SAT Clause-Sets using 
GSPRA50  
To see GSPRA for a.a. Sets in action refer to below SRTs generated in sequence for Set 
S={{0,3}{0,7}{1,2}{1,4}{5,6}{3,8}}: 
 

 

                                                 
50 Observing the algorithm work on monotone, +ve 2-SAT does not reduce the generality of properties 
discussed below which occur even with this restricted version of the problem. 

T1 

T3 

T4 

T2 
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Note the following aspects apparent in 
the above GSPRA(S) sequence: 
 

1. Number of nodes (not counting leafs) 
increase from T1 to T4 in the 
following way: 3,5,8,15, i.e., almost 
doubling between trees T3 & T4. 

2. ({1,2}{1,4}{5,6}), the node marked 
with an ellipse in T3 is a node 
common between two branches and a 
subset of the original Clause-Set S. 

3. This common-node as well as all its 
sub-nodes is copied once when T4 is 
formed and the copy is processed 
with the new clause {3,8} while 
retaining the original node. 
Thus, two nodes are formed in T4: 
({1,2}{1,4}{5,6}) and ({1,2}{1,4} 
{5,6}{3,8}). This is called a CN-split 
of ({1,2}{1,4}{5,6}) and plays an 
important role in the complexity of 
GSPRA (c.f. Definition 8 below). 

4. The common-node ({1,2} {1,4} 
{5,6}) is of rank 2 which is the same 
rank as the base-node rank. We can 
explain splitting of such a common-
node as follows: While solving a 
problem having a certain order of 
magnitude the algorithm needs to 
duplicate the result of solving a sub-

problem having the same order of 
magnitude. 
 

This behavior is the cause of 
inherent exponential complexity. 

 

Definition 3: An SRT of a Set S of a.a. 
3-SAT-CNF-clauses is called 
sequentially-ordered if every Clause-Set 
in any non-leaf node of the SRT has 
only one clause or its derivation or has 
the form: S={Ci, Cj, … CM } for some 
i<j<….<M, M number of clauses in S, 
where Cx’s are clauses or derivations of 
clauses in S. 
 

Definition 4: An SRT of a Set S of 3-
SAT-CNF-clauses is called strongly 
ordered (s.o.) if every Clause-Set 
formed during resolution is linearly 
ordered (l.o.). In that case the Set S is 
also called strongly ordered. Strongly 
ordered Sets are always linearly ordered 
whereby the inverse is not always the 
case, i.e., some s.o. Sets may have 
Clause-Sets in their IRTs which are not 
l.o. 
If a Set S has a base Clause-Set which is 
l.o. while some other Clause-Sets in its 
generated IRTs are l.o.u., then S as well 
as its SRT is called loosely ordered 
(lo.o.), e.g.: 

 
 
 
 
 
 
 
 
 
 
 

 

Definition 5: A node [q] is called 
common-node (CN) in an SRT of a Set 
of 3-SAT-CNF-clauses S if in step k of 
the resolution it becomes a common 
child to two or more nodes ([x], [y], [z], 
… (Fig.2)). This happens when x,y,z,… 

literals are replaced by TRUE or 
FALSE in their respective Clause-Sets. 
The common-node [q] contains the first 
appearance of its name literal (NL) q in 
all branches of the SRT containing 
[x],[y],[z],.. 

S.o. Tree 

Lo.o. Tree 
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X Y Z …….. 

Q 

 
 
 
 
 
 

Figure 2: Common-node generated in <=k. 
 

Types of common-nodes for 3-SAT-
CNF-clauses are: Head-, Middle- and 
Tail Common-nodes (HCN, MCN, and 
TCN). 
 

More precisely: 
 

− A CN [q] is called HCN if its 
Clause-Set has a leading clause C 
∈  S, NL q is head of C 

− A CN [q] is called MCN if its 
Clause-Set has a leading clause C’ 
which is derivation of a C ∈  S, NL 
q is middle of C 

− A CN [q] is called TCN if its 
Clause-Set has a leading clause C’ 
which is derivation of a C ∈  S, NL 
q is tail of C 

 

Examples for both HCN and TCN are 
provided in Lemma 2 and its respective 
remarks. 
A CN produced in step k is called 
“supported” in a step >k if its Clause-
Set gets clauses appended to its head 
which don’t belong to any block which 
was instantiated in steps <=k by one or 
more of its parents. A parent-set of 
such a CN is called “supporting”. In 
Fig. 3 an example is shown for the CN 
{b,c} which is supported by clause 
{d,e} not belonging to block Ba: 

If a head-clause of a CN is also a clause 
of one of its parent-sets, then this 
parent-set is called “direct parent” of the 
CN. The CN itself is called “direct 
child” (Fig.4-a): 
 
 
 

 
 

 
 
Definition 6: A dependency graph 
(DG) of a Set of 3-SAT-CNF-clauses S 
is a directed, acyclic graph <V,E> 
where V is the Set of all NLs, E the Set 
of ordered pairs <v1,v2> , v1,v2 ∈  
representing instantiations of NLs 
produced during GSPRA(S). DGs can 
be deduced from SRTs in a canonical, 
straightforward way51 and used as 
practical alternatives for truth tables 
(c.f. Property 1). They are equivalent to 
Free Binary Decision Diagrams 
(FBDDs)52 as shown in Property 7. The 
following two properties define a DG: 
 

1. Each NL can appear only once in a 
branch. 

2. Branches can have different 
literal/variable orderings ∏p 

depending on the sub-problem p they 
belong to53. 

                                                 
51 By abstracting in each resolution-step for 
each node of the SRT the least-literal of the 
head-clause and building out of it a 
corresponding node in the DG. 
52 FBDDs are normally generated independent 
of SAT-Solvers or by recording - on top of 
resolution-procedures - variable assignment 
decisions encountered while trying to find a 
solution. The methods described here produce a 
canonically ordered FBDD(=DG) representing 
existent variable alignments in the used clauses. 
This FBDD is the core product of our Solver 
rather than a mere byproduct. 
53 In contrast to OBDDs in which one 
literal/variable-ordering is governing the whole 
graph. Figure 3 

Figure 4-a 
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A leaf of a DG is a node whose value is 
TRUE or FALSE. Positive leafs have 
the value TRUE. Fig. 4-b shows an 
example of a DG for the exemplary s.o. 
tree in Definition 4. 

 
 

Definition 7: Algorithmic 
Equivalence of nodes 
 

Two nodes of similar size >1, n1∈ 
SRT1, n2 ∈ SRT2 are said to be 
Algorithmically Equivalent (n1 ≈ n2) iff 
 

a) their Clause-Sets are (not necessarily 
Syntactically) Equivalent54 and  

b) their respective left- and right sub-
nodes are Algorithmically 
Equivalent. 

For size =1: n1 ≈ n2 iff their Base-
Clause-Sets form isomorphic SRTs, i.e., 
SRTs having the same structure of 
leaf/non-leaf-nodes, e.g. (Fig. 5 and 6):  

 
 

                                                 
54 They might be equivalent modulo renaming 
of variables. This loose notion of equivalence 
shall be hardened for GSPRA to become a 
syntactical one as shall be seen in the properties 
below. 

Is not isomorphic to: 
 
 
 
 
 
 
 
 
 
 

B) PROPERTIES OF GSPRA AND 
DEFINED STRUCTURES 
 

The following ten properties of the 
GSPRA algorithm as well as Lemma 1, 
Corollary 1 and Lemma 2 are valid for 
s.o., lo.o. and/or a.a. 3-SAT-CNF-Sets 
as indicated in each respective place 
below. When nothing is indicated, a.a. 
Clause-Sets are meant. For a summary 
of the main results of this section refer 
to Fig. 41 at the very end of this section. 
 

Property 1 (completeness, truth table 
equivalence): GSPRA is a complete, 
truth table equivalent algorithm, i.e., it 
returns TRUE iff there exists a variable 
assignment in the truth table constructed 
for the Set S which satisfies it and 
FALSE otherwise. 
 

Proof: (by induction on M, the number 
of clauses in S) 
 

Base: M=155 for the following tree: 
 
 
 
 
 
 
 
 

                                                 
55 The case used here (w.l.o.g.) is not the only 
permutation of +ve/-ve literals a,b,c combined 
in a clause. The reader is encouraged to check 
other permutations and verify the validity of the 
property for M=1 in a similar way to the one 
shown here. 

Figure 4-b 

Figure 5 

Figure 6 

Figure 7 

c 

{¬b,c} 

{a,¬b,c} 

TRUE 
{c} 

 

a ¬a 

b ¬b 

TRUE 

¬c 

FALSE 

TRUE 
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If we construct the truth table 
 

A B c S 
0 0 0 1 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

 

and use the following tree propagation 
rule applied to any node in the tree: 
"If the input value of the literal written 
on the edges of the node is TRUE go 
left, else go right. Apply this rule to all 
nodes in the tree until you reach a leaf". 
Eventually, the obtained results are 
equivalent to the ones found in the truth 
table. Let us check the two marked 
cases using the tree. For "010" the base-
node will take us right through edge ¬a, 
then left through edge b, then right 
again through edge ¬c, making the 
overall value FALSE as stated in the 
truth table. For "101" we are taken by 
edge a directly to the value TRUE 
which is the value of the truth table as 
well. The reader is encouraged to check 
all the other truth table entries for 
validation.  
 

Induction Hypothesis: SRT for M-
clauses is equivalent to the truth table 
constructed for all variables whose 
literals are used in the M-clauses. 
 

Induction Step: When clause CM+1 = 
{x,y,z} is processed the following cases 
can be distinguished: 
 

1. x,y,z are new variables in S: GSPRA 
will propagate CM+1 until leafs are 
reached. If leafs are +ve then the tree 
representing CM+1 will substitute 
them, otherwise FALSE is left (as 
instructed in Definition 2, step 2 c) 
and d). Each branch not ending with 
FALSE will thus have as extension a 

tree giving all possibilities of 
variable assignments for the three 
new variables (as seen in the Base-
Case). A branch which terminates 
with FALSE is guaranteed by 
induction hypothesis to reflect the 
fact that the Clause-Set is not 
satisfiable even without taking the 
new clause into consideration. Thus, 
the newly constructed tree is 
logically equivalent to an extended 
truth table taking into account the 
new variables56.  

2. x exists in S, while y,z are new: 
When CM+1 is propagated through 
branches of the tree, those 
terminating with FALSE - as seen in 
the previous case - are not dependent 
on the new clause and will keep their 
values and guarantee (per induction 
hypothesis) that the Clause-Set is not 
satisfiable. For all those branches 
which terminate with TRUE it either 
might be the case that this truth value 
is independent of the new variables 
and thus the truth value is kept as it 
is per induction hypothesis57, or the 
branch is extended to give all 
possibilities of assignments of the 
new variable(s) as before58. In both 
cases the newly constructed tree 
logically corresponds to an extended 
truth table which contains values for 
two more variables in all branches 
where it is relevant. 

3. x,y or x,y,z are already in S: Either 
no new nodes are added to the tree in 

                                                 
56 Although syntactically the number of entries 
of the truth table is bigger, since the tree is 
discarding all unnecessary variable/value 
combinations (such is the case when the Clause-
Set has already reached the value FALSE and 
adding new variables cannot change this fact). 
57 like the case of node {2}{2,3} in the above 
s.o. tree: Adding the clause {2,3} to the node 
{2} did not change the truth value of its children 
which were leafs. 
58 in the same s.o. tree compare the case of 
node {1,2} before and after adding {2,3}. 
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all those branches where variables 
already exist and where per induction 
hypothesis the tree is already 
equivalent to the right truth table 
portion in those branches or x and/or 
y and/or z are new in some branch. In 
that case they will be added to the 
+ve leafs accordingly and correspond 
to specifications of truth table values 
which were don't cares before59. 
(Q.E.D.) 

 

Illustration of Property 1 for the case 
(M=2) 60: 
Suppose S={{¬a,b,¬c}{b,c,¬d}}, its 
SRT is as in Fig. 8: 

 
The following Truth Table 2 is the truth 
table for the above tree. If a variable 
value of the truth table does not apply to 
a tree node (simply because the literal 
does not exist in the Clause-Set), skip it. 

                                                 
59 For illustration: Consider the case where 
{1,2} is added to {0,1}{0,2}. The left branch of 
the tree {0,1}{0,2} which is the leaf TRUE, 
corresponds to the fact that values of 1&2 are 
not relevant for the overall value of the formula 
{0,1}{0,2} when literal 0 is set to TRUE 
following this particular assignment branch, i.e., 
they are don't cares. When {1,2} is added, its 
tree replaces TRUE indicating for what values 
of 1 & 2 the same truth table gives truth values 
capturing satisfiability conditions of the newly 
added clause {1,2}. 
60 This property is known to hold for BDDs in 
general and thus FBDDs as well, so there is no 
surprise that DGs or SRTs possess it (c.f. 
[Friedmann 1986]). 

Example: Entry a=1,b=1,c=0,d=0 in the 
table gives S=1. If starting at the base-
node and going left (because a=1) 
through the +ve a edge, the node 
{b,¬c}{b,c,¬d} will lead straight to the 
value TRUE (since b=1). 
 

A B C D S 
0 0 0 0 1 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 1 
0 1 0 0 1 
0 1 0 1 1 
0 1 1 0 1 
0 1 1 1 1 
1 0 0 0 1 
1 0 0 1 0 
1 0 1 0 0 
1 0 1 1 0 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 1 

 

Property 2 (expansion of SRTs): 
∀n1,n2 nodes ∈ SRT, n1<> n2: if n1,n2 

are not directly connected in steps <=k, 
then they cannot be directly connected 
in steps >k except in the trivial case 
when the new clause belongs to a block, 
parents of nodes were instantiating in 
steps <=k and n1, n2 become equivalent. 
Moreover: Nodes of sizes j<=M 
generated in step k are at most as many 
as nodes of sizes j-1 existent in step k-1 
not counting nodes generated through 
splits in size-level j of the SRT. 
 

Proof: One intrinsic property of 
GSPRA is that it directly connects - per 
definition - two nodes iff the Clause-Set 
of one of them can be instantiated - in a 
way respecting the least-literal/head-
clause-rule - to become the parent of the 
other. Suppose we have at step <=k a 
situation in the SRT as seen in 
following Fig. 9 (left part): nodes n1,n2 
are not connected. They both get 

Figure 8 

Truth Table 2 
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instantiated through their least-literals 
a,b to different directions in the tree. 
Any further clause {x,y} in steps >k will 
keep this situation intact, since a and b 
remain the least-literals in their 
respective Clause-Sets and cannot be 
bypassed by clause {x,y} in the new tree 
(Fig. 9 right part) even in the worst 
case:61 
Fig. 10 shows a trivial exception of this 
situation where both nodes are merged 
in steps >k (right) as the new clause 
{i,a,b} belongs to a block Bi parents of 
both nodes were instantiating in steps 
<=k. The added clause makes N1 
equivalent to N2 as seen. We call those 
types of CNs: Trivial Common Nodes 
(tCNs). They are formed in what we 
call: Symmetric Blocks (SBs) to be 
defined below and are included in the 
properties/lemmas dealing with the 
generation of CNs.  

                                                 
61 Worst case here means when {x,y} is 
propagated through all the nodes as seen in the 
figure. Otherwise it might be that some nodes 
remain the same as in step k and are thus not 
connected either. 

Furthermore: As resolution is 
sequential, then per definition the only 
source of new j-sized nodes, j<=M, in 
step k are j-1 sized ones in step k-1 
which are resolved with the new clause. 
This is not counting any nodes copied in 
split-operations in the j-size-level of the 
SRT of course. Thus, the number of 
generated j-sized nodes in step k is 
always bounded above by the number 
of existent j-1 sized nodes in step k-1 if 
split operations are not counted.  
(Q.E.D.)  

Figure 9 

Figure 10 

i 

Figure 10 

Base-Set/Node 

N1: {a,..}{..}.. 
N2: {b,..}{..}.. 

...... ...... 
a b 

Base-Set/Node + {x,y} 

N1: {a,..}{..}.. {x,y} 
N2: {b,..}{..}.. {x,y} 

...... ...... 
a b 

i 

Base-Set/Node+{¬i,a,b} 

N1: {a,b} 
N2: TRUE 

TRUE 
{b} 

a 

FALSE TRUE 

Base-Set /Node+{¬i,a,b}+{ ,a,b} 

N1: {a,b} 

TRUE 
{b} 

a 

FALSE TRUE 
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Property 3 (linear derivation of 
clauses): GSPRA produces for s.o. and 
lo.o. Clause-Sets only linear derivations 
of newly resolved clauses at any 
resolution-step62. 
 

Proof: This property is also caused by 
the least-literal/head-clause-rule 
(Definition 2 5.). To see this consider 
the case when during resolution of a 
new clause C={x,y,z} with the IRT, C is 
processed and gets instantiated by 
putting y=FALSE for example resulting 
thus is a derivation C'={x,z} which is 
not linear. This can only happen - as per 
the least-literal/head-clause-rule - if y is 
the least-literal of a head-clause in that 
step, i.e., there is a Clause-Set of the 
form: {{y,...}...{x,y,z}....} which is 
being instantiated. If variable x is 
bypassed during this instantiation 
process, then either x's first occurrence 
is in {x,y,z}, i.e., it is a new variable, 
and in that case it will constitute a 
breach of the new variable names 
condition (Definition 1 c)), or x 
occurred before {x,y,z}. As x could not 
have occurred in {y,...} because of the 
sorting condition of literals within 
clauses (Definition 1 a)), it must be the 
case that x occurred in a clause between 
{y,...} and {x,y,z}. But then x is still 
new with respect to y and we still have a 
breach of Condition 1 c). Thus, no non-
linear derivations are possible for newly 
processed clauses through GSPRA if 
SRTs are s.o. or lo.o. 
(Q.E.D.) 
 

Property 4 (generation of non-trivial 
CNs): The only non-trivial CNs 
generated in any step k by GSPRA 
while resolving clause C of a Set of 3-
SAT-CNF-clauses which are s.o. or 
lo.o., are identical with either C or 
linear derivations of C. 

                                                 
62 Linear derivations of C being a proper subset 
of perm(C). 

Proof: Recall - as per Property 2 - that 
non-trivial CNs generated in step k are 
the ones which are not formed, because 
C belongs to a block, some parents were 
instantiating in steps <k. Suppose now 
such a non-trivial CN is neither C nor a 
linear derivations of it. This means that 
a "legacy" node constructed in steps <k 
became non-trivial CN in step k. For a 
node to become CN, at least two nodes 
have to be connected to it in a parent-
child relation as per Definition 5. This 
can only mean that at least one new 
connection has been established in step 
k between two nodes which were 
previously not connected. As per 
Property 2 this can only happen in the 
trivial case when C belongs to a block, 
some parents were instantiating in 
steps<k and the formed CN is a tCN. 
Contradiction. Moreover: The linear 
derivation property (Property 3) tells us 
that only linear derivations of C can 
become non-trivial CNs for s.o. and 
lo.o. SRTs 
(Q.E.D.) 
 

Property 5 (uniqueness of 
instantiation results): Let S be an a.a. 
Clause-Set, S1, S2 any direct children of 
S produced - through instantiations of 
literals i,j respectively - by an 
instantiation procedure using the least-
literal/head-clause-rule, then S1=S2 iff 
i=j. 
 

Proof: If i=j then it is obvious that 
S1=S2=unique Clause-Set per definition 
of any instantiation procedure63. If 
S1=S2 then the question is: Can we 
instantiate two different literals in S and 
still get the same direct child Clause-Set 
(i.e., can i<>j imply S1=S2). In general 
this is possible. For example, the Set 
S={{a,b,c}{x,y,z}} can yield 
S1={{x,y,z}}=S2 if we use either 
                                                 
63 Remember that instantiation of literals is 
done by replacing them in clauses with TRUE 
or FALSE depending on used signs. 
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i=a=TRUE or j=b=TRUE. However, 
when an instantiation procedure uses 
least-literal/head-clause-rules this 
cannot happen, because at any step k, 
producing a direct child, and for any 
Clause-Set S there is only one least-
literal chosen for instantiation from 
either a or b. Thus, if in a step and for 
the same S literals are instantiated to 
give the same child-set, then they must 
be the same. Moreover: Once S is 
instantiated this way in step k, the same 
S is never instantiated again in steps >k. 
(Q.E.D.) 
 

Property 6 (Syntactical Equivalence): 
Let S1, S2 be two a.a. Clause-Sets of 
nodes n1, n2 of an SRT produced by 
GSPRA such that S1 is instantiated in a 
step k using literal a to produce S1Left, 
S1Right, S2 is instantiated in the same 
step k using literal i to produce S2Left 
and S2Right, then: (S1Left=S2left and 
S1Right=S2Right) iff S1=S2. 
 

Proof: If S1=S2=S, then a=i and left- 
and right direct-children Clause-Sets of 
S are unique as per Property 5. 
To see why the other direction is also 
valid, consider Fig. 11 where S1 and S2 
are instantiated using a, i (respectively) 
to produce a common left Clause-Set 
and using a,¬ i to produce a common 
right one (rectangles). Suppose that 
S1<>S2, i.e., there exists at least a clause 
C ∈ S2 , but not ∈ S1. If C doesn’t 
contain literals a, i then it should appear 
in both left- and right Clause-Sets when 
S2 is instantiated using i. This cannot be 
the case, because S1 doesn’t contain C. 
If C contains i but not a, then it 
shouldn’t appear in one node (left or 
right according to the sign of i in C), but 
its derivation C’ containing literals 
other than i (and a) has to appear in the 
other side contradicting again the fact 
that C doesn’t exist in S1. If C contains 
a, but not i, then it should appear in the 
left- and right child nodes contradicting 

the fact that those nodes shouldn’t 
contain any literal a, since it has been 
instantiated through S1. Also: S1 doesn’t 
contain C or any of its derivations in the 
first place. Finally, if C contains both 
a,i, then some derivation C’ will have to 
appear in a child node contradicting the 
fact that S1 doesn’t contain C. Therefore 
S1=S2. 
(Q.E.D.) 
 
 
 
 
 
 
 
 
 

Figure 11 
 

Property 7 (FBDD-equivalence, 
Branch Linearity): Let f be a function 
expressible in a.a. 3-SAT-CNF-form, 
then:  

a) The DG produced by GSPRA is 
an FBDD. 

b) Any FBDD produced for f can 
also be produced by a procedure 
which uses variable orderings, not 
necessarily canonical, to guide 
instantiation of literals in the 3-
SAT-CNF-representation of f. 

Proof: 
1. Remember that a DG can be 

abstracted in a straightforward way 
from an SRT (c.f. Footnote 51, 
Definition 6). We have therefore to 
show that: If b is a branch of the DG, 
then the maximum size of b is N, 
where N is the number of variables 
in S, i.e., any variable appears only 
once in b. Moreover: Each 
resolution-step expands b by at most 
3 new nodes. It is sufficient to see 
that when the least-literal-rule is 
applied to form a +ve edge, starting 

S1 

a ¬a 

  

S2 

i 
¬i 
i 
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from a node n with NL x, all 
occurrences of x are instantiated with 
TRUE. Similarly with -ve edges and 
¬x. Therefore: Clause-Sets in nodes 
below n do not have literal x in any 
of their clauses per definition. This 
makes it impossible to produce 
another edge bearing the same 
variable/literal name on any branch 
in any further resolution-step. Also, a 
new clause in a resolution-step may 
contain a maximum of 3 new literals 
whose edges are not already present 
in b. This makes the maximum 
amount of newly added nodes in b 
per step: 3. 

2. Suppose f has an FBDD. Branches of 
this FBDD define variable orderings 
(not necessarily the same for all 
branches) which can be used as 
instruction guidelines by any 
procedure PR instantiating 
variables/literals in the 3-SAT-CNF 
expressing f. The final output of PR 
is then the same FBDD (with 
possible isomorphic sub-graphs). 
This PR may look like this: 

PR: 
Inputs: Clause-Set S representing 
function f in 3-SAT-CNF-form, FBDD 
for f 
Outputs: Final Tree (not necessarily 
SRT) 
Steps: 

1. For the currentFBDDNode 
(initially the root node) 
i. if currentFBDDNode is a leaf 

then return leaf 
ii. read the variable in the node 

iii. instantiate S using this 
variable, left and right.  

iv. create in the resultTree two 
nodes representing left and 
right instantiations of S (call 
them S’ and S’’ respectively) 

v. call yourself recursively for 
left side: PR(S’, 
leftNodeOf(currentFBDDNo
de)) 

vi. call yourself recursively for 
right side: PR(S’’, 
rightNodeOf(currentFBDDN
ode)) 

2. return resultTree 

(Q.E.D.) 
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Property 8 (SRT-structure): SRTs 
produced by GSPRA for s.o. and lo.o. 
3-SAT-CNF Clause-Sets S of size M 
have in their top-part, i.e., until all 
literals of the chosen first clause C0 are 
instantiated64, at most k M-sized unique 
and k <M-sized not necessarily unique-
nodes, where k<=3, k = number of 
literals in C0. Moreover: No SPR-
unlike65 resolution-procedure using any 
variable ordering on S can produce less 
than k M-sized unique-nodes and k <M-
sized not necessarily unique-nodes in 
the top-part of its resolution-tree. 
 

Proof: When a literal in a clause C is 
instantiated, it creates two types of 
Clause-Sets, one in which a linear 
derivation of C is formed and the other 
in which C becomes TRUE. The 
number of Clause-Sets resulting after 
the instantiation of all literals of C for 
each type (including the base one) being 
at most 2*k, k = breadth of C. As 
prescribed in Definition 2, step 1, 
GSPRA builds upon the tree shown 
there which represents all such 
instantiations of clause C0, which must 
be the shortest. As sequential resolution 
proceeds and clauses are propagated 
one by one through all branches of 
IRTs, the overall structure of this tree is 
not altered (per definition). Instead, 
sizes of its nodes are subject to change. 
All non-leaf-nodes whose total number 
is k, of this first tree containing C0 or 
unique linear derivations of it, get new 
clauses appended to their Clause-Sets 
rendering them of size M in the final 
SRT. Leaf-nodes marked with TRUE in 
the first tree of C0 are filled stepwise 
with Clause-Sets which can only 

                                                 
64 C0 is chosen in Preliminary Step 0, 
Definition 2. 
65 SPR-unlike is any procedure which does not 
choose only one clause (C0) to fully instantiate 
in the top-part of its resolution-tree. It allows 
thus non-minimal top-parts.  

possess <M clauses, since they miss at 
least C0. Their number is also k<=3. 
Those <M-sized nodes might not be 
unique, since subsequent instantiations 
of S which make C0 TRUE may result 
in equivalent Clause-Sets. Fig. 12 
shows a generic picture of the top of a 
possible final SRT (w.l.o.g.). Note that 
both blue (called: Top Head Nodes, 
THNs) and red nodes (called: Top 
Body Nodes, TBNs) of the figure are 
considered to be in the top-part of the 
overall SRT. One thing has to be 
remembered: Signs of literals determine 
the position (i.e., left or right) of TBNs 
and THNs. In the generic case shown 
here, TBN-clauses are all on the left 
side because all literals are assumed 
(w.l.o.g.) to be positive. 

 
 

Figure 12: Top Head Nodes (THNs) and 
     Top Body Nodes (TBNs) 

 

For the second claim: Any k’-
consecutive literals picked up for 
instantiation in the beginning of any 
resolution-procedure  will have either to 
be from the same clause or from 
different clauses in S. If S is M-sized 
and k’ literals are chosen from the same 
clause, then the procedure is said to be 
SPR-like and <M-sized Clause-Sets in 
both left- and right sides of 
instantiations, included in the boundary 
of the SRT-top, are reached in k’ steps 
at least (where k’>=k, k size of C0 ) 66. 
                                                 
66 It might be the case that an SPR-like 
procedure picks an initial clause different from 
the shortest one picked by GSPRA. 
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If on the other hand k’-consecutive 
literals are chosen from different 
clauses (SPR-unlike), then emptying at 
least one clause will definitely take >k 
steps, i.e., since C0 is the shortest, one 
needs always at least k steps to empty 
any clause. Thus, k M-sized unique-
nodes and k <M-sized not necessarily 
unique-nodes is less than or equal to 
any possible number of nodes of either 
type reached in the top-part of a tree 
produced by any SPR-unlike 
procedures.  
(Q.E.D.) 
 

Property 9 (generality of canonical 
orderings): Any ordering ∏p applied to 
a node solving problem p - formalized 
using an a.a. 3-SAT-CNF Clause-Set S 
(in a tree generated by a procedure PR 
not necessarily SPR-like) can be 
converted to a canonical ordering ∏c

p 
used by PR with a least-literal-rule. 
Moreover: If an SRT produced by SPR-
like procedures has a minimal number 
of unique-nodes with respect to all 
possible canonical orderings used by 
such a PR, then it is minimal for all 
non-canonical orderings used by PR as 
well. 
 

Proof: Suppose ∏p ={a,i,k,h,b,c,…} 
where a<i<k<h<b<c,… is an arbitrary 
ordering containing instantiation 
precedence of literals in S applied by 
any procedure PR, then 
literals/variables in S can be renamed 
using a bijective function67 f: N => N in 
the following way: 
 

f={(a,a)(i,b)(k,c)(h,d)(b,e)(c,f)…}. ∏p  
shall become 

∏c
p={a,b,c,d,e,f,…} 

 

which is canonical. PR can obviously 
use ∏c

p with a least-literal-rule to 
achieve the same results as it did with 

                                                 
67 This function is called in next sections a 
mapping. 

∏p. Suppose now SRTMin constructed 
for S using GSPRA via a ∏c is minimal 
for all possible canonical orderings, i.e., 
the number of nodes in SRTMin <= 
number of nodes in any tree constructed 
for S by PR using any canonical 
orderings68. If ∏p’ is an ordering used 
by PR which is not canonical such that: 
Number of nodes of a tree constructed 
by PR using ∏p’ < number of nodes of 
SRTMin, then S can be renamed so that 
∏p’ becomes ∏c

p’ as seen above and 
produces a smaller SRT than SRTMin 
when used by PR via a least-literal-rule 
contradicting the minimalism 
assumption of SRTMin for all canonical 
orderings. This means that SRTMin is 
minimal whether canonical orderings 
are used by PR or not. 
(Q.E.D.) 
 

Property 10 (Algorithmic Equivalence 
                    = Syntactical Equivalence) 
Let n1,n2 be nodes ∈ SRT of a Set of 
a.a. 3-SAT-CNF-clauses, S1,S2 their 
respective base Clause-Sets: n1 ≈ n2 iff 
S1=S2. 
 

Proof: (by induction on M, the size of 
nodes) 
 

Base-Case M=1: If n1 ≈ n2 then per 
Definition 7 SRT1 of n1 is isomorphic to 
SRT2 of n2. Let b1 ={{a,b,c}} be base 
Clause-Set of SRT1 and b2 = {{x,y,z}} 
be base Clause-Set of SRT2. We can 
make b1=b2 by renaming literals in b2 
(x>a,y>b,z>c) without affecting the 
truth value of the Clause-Set. The other 
direction is trivial69. 
 

Induction Hypothesis: ∀n1,n2 nodes ∈ 
SRT, S1,S2 their respective base Clause-
Sets of size M: n1 ≈ n2 iff S1=S2. 
 

                                                 
68 Different canonical orderings can be created 
using different renaming functions f. 
69 The case shown here (w.l.o.g.) has only +ve 
literals. The same property is valid for all other 
cases as the reader may wish to verify. 
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Induction Step: For size M+1: 
If n1 ≈ n2 then: As per Definition 7 left- 
and right sub-nodes of n1, n2 are 
equivalent as seen in Fig. 13 (dashed 
lines) in which rectangles represent M-
sized and ellipses M+1 sized nodes. 
Applying Definition 7 recursively also 
renders other M+1, M-sized nodes 
equivalent (solid lines). For all 
rectangular nodes the induction 
hypothesis applies, i.e., their Clause-

Sets are also equivalent. This makes it 
possible to apply Property 6 to the 
lower, purple part of Fig. 13 thus 
deducing that Clause-Sets of nodes n1’ 
and n2’ are equivalent, then applying 
Property 6 again to the blue part to 
reveal that Clause-Sets of nodes n1’’ 
and n2’’ are equivalent before applying 
Property 6 to the top-part to finally infer 
that Clause-Sets of nodes n1 and n2 are 
equivalent. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Algorithmic Equivalence = Syntactical Equivalence
 
Other direction: If S1=S2, then as per 
Definition 7 left- and right sub-nodes 
have to be algorithmically equivalent as 
well to make n1 ≈ n2. We know that left- 
and right Clause-Sets are syntactically 
equivalent (Property 6). For the 
rectangular nodes, the induction 
hypothesis can be applied. For the 
elliptical nodes we go a level deeper 
applying Definition 7 and Property 6 
again and so on. Thus n1 ≈ n2 . 

 
Lemma 1: SRTs of 3-SAT-CNF 
Clause-Sets S - whether s.o. or lo.o. - 
are sequentially-ordered.  
 

Proof: (by induction on M, the number 
of clauses is S) 
 

Base-Case M=1: The SRT produced in 
Definition 2, step 1 is sequentially-
ordered per definition where C0’, C0’’ 
are derivations of C0 (Fig. 14):

(Q.E.D.) 
 
 
 
 
 
 
 

Figure 14: sequentially-ordered SRT 
 
 
 
 

 

n1 n2 

 

 

  

 

 

  

n1’ n2’ 

n1’’ n2’’ 

C0’ 

C0 

TRUE 
TRUE 

a1 ¬a1 

b11 
¬b11 

C0’’ 
 

TRUE 
¬c11 

FALSE 
c11 
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Hypothesis: For s.o. and lo.o. Sets S 
of M clauses, SRT is sequentially-
ordered 
 

In resolution-step M+1: Let S’ = S ∪ 
{x,y,z}70. Following cases can be 
distinguished: 
1. x,y,z are new literals => Then 

CM+1={x,y,z} is going to be added to 
all Clause-Sets in the resolution-tree 
except the leafs which may be 
transformed to the tree representing 
CM+1 => According to the induction 
hypothesis all nodes are already 
sequentially-ordered, adding CM+1 

preserves this order for M+1 
2. x is already in S while y, z are new 

=> for any general node in the SRT 
for steps <=M of the form (Fig. 15): 

 
 
 
 
 
If L<>x => then this part of the tree 
(and similar ones) will look like Fig. 16 
after step M+1, hence, preserving the 
property: 
 
 
 
Figure 16 
 
 
If L=x => the sub-tree will look like 
Fig. 17 also preserving the property: 
 
 
 
 
 

Figure 17 
 

                                                 
70 An example permutation with only +ve 
literals is used here for simplification and 
(w.l.o.g.). 

3. x,y already in S, while z new or x,y,z 
already in S => similar to case 2, for 
any node in the SRT:  
a. If x=L and y, z<>L a derivation 

of the new clause CM+1 is not 
added to the left Clause-Set of 
the node and added to the right 
one (after setting x=FALSE) 

b. If x<>L and y or z =L: this case 
can never happen because of the 
least-literal-rule 

c. If x<>L and y,z <>L the new 
clause CM+1 is added to both 
sides 

thus preserving the sequential ordering 
property in all the above cases. 
(Q.E.D.) 

S 

{…} {…} 

¬L L 

¬L L 
S {x,y} 

{…}{x,y,z} {…}{x,y,z} 

¬x x 
S  {x,y,z} 

{…} {…}{y,z} 

Figure 15 
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Illustration of Lemma 1 for sample case (2-SAT, M=3, +ve literals only): 
Let S be {{a,b},{c,d},{e,f}}={C1,C2,C3}: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18: canonical SRT for S 
 
Note that all nodes (except the leafs) are either of the form {C1,C2,C3} or {C2,C3} or 
{C3}. Trying to equalize any literals without breaching the s.o. or lo.o. property of S71 
(for example a=c=e or a=c only, but not a=f) will yield all the resulting tree(s) 
sequentially-ordered. Fig. 19 shows the above tree if a=c and d=e. 

                                                 
71 Recall that the main difference between s.o. and lo.o. Sets is the fact that Clause-Sets (other than the 
Base-Set) may be l.o.u. rather than l.o. While clauses in a l.o.u. Set may not be sorted as required by 
Definition 1 b), they do keep their original clause sequence, which is relevant here, intact. 

b 

d 

{b}{c,d}{e,f} 

{a, b}{c,d}{e,f}  

{c,d}{e,f} 
{c,d}{e,f} FALSE 

a ¬a 

¬b 
c ¬c 

{d}{e,f} 

{e,f} FALSE 
¬d 

e 

TRUE 
{f} 

¬e 

FALSE 

¬f f 

TRUE 

{e,f} 
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Figure 19 
 
 
 
Illustration of Lemma 1 for sample Case (2-SAT, M=3, +ve/-ve literals): 
The below tree (Fig. 20) shows for a sample Base-Case of 2-SAT that a sequential order of clauses is preserved. The 
least-literal/head-clause-rule is seen not to be affected neither by negation nor by breadth of clauses. 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 20 
 
 
 
 
Corollary 1: Suppose Ci, Cj are clauses 
of a s.o. Set S of a 3-SAT-CNF-
problem, where i<j, then some literals 
of Ci must appear in branches of the 
SRT containing Cj and get instantiated 
before literals of Cj.. 
 

Proof: Two evident properties of 
GSPRA should be emphasized first: 
 

1. Any clause C or its derivation C’ is 
resolved against all branches of the 
IRT constructed in intermediate steps 
(c.f. Definition 2 of GSPRA). 

2. If C or C’ disappear from Clause-
Sets of resolution-tree nodes, this is 
because some of the literals got 
instantiated either with TRUE or 

FALSE (according to signs of those 
literals) and made the overall truth 
value of C or C’ =TRUE. 

Knowing that, there are following 
possibilities for any Clause-Set S’ of 
any node in the resolution-tree of S with 
respect to Ci, Cj: Either Ci, Cj both 
appear in S’ in which case (as per 
Lemma 1) they are already sequentially-
ordered, i.e., Ci literals appear before Cj 
ones and accordingly get instantiated in 
the same sequence in branches, or only 
Cj appears in which case (because of 
properties 1,2 above) the only reason 
for the disappearance of Ci would be 
that some of its literals got instantiated 
with TRUE or FALSE before S’ or only 

c 

{¬a,b}{c,¬d}{¬e,¬f} 

{b}{c,¬d}{¬e,¬f} 
a 

¬a 

b 

{c,¬d}{¬e,¬f} 

{¬e,¬f} 
 

{¬d}{¬e,¬f} 
¬c 

FALSE 

FALSE 

¬b 

FALSE 

¬b 

{b}{d}{d,f} 

{a,b}{a,d}{d,f} 

a ¬a 

b 

¬d 

FALSE 

d 

TRUE 

{d}{d,f} ¬d 

TRUE 

{d,f} 

d 

{f} 

TRUE FALSE 
f 

¬f 
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Figure 21 

Figure 22 

While the same tree for the ordinary 2-SAT case may look like Fig. 22 for a sample 
permutation: 
 

{… {a,X} ..{b,Y} ..} 

{{a,X} ..{b,Y} ..} 

a 
~ a 

{..{b,Y} ..} 

{{X} ..{b,Y} ..} 

~x x 

{… {¬a,X} ..{b,Y} ..} 

{{¬a,X} ..{b,Y} ..} 

{{X} ..{b,Y} ..} 
 a ~ a 

x 
~x 

{..{b,Y} ..} 

Ci appears meaning (also because of 
properties 1,2 above) that a literal of Cj 
got instantiated before any literal in Ci 
making the overall value of Cj TRUE 
which cannot happen, because of the 
least-literal-rule and the fact that all 
Clause-Sets are l.o.72 or Ci, Cj both  

                                                 
72 Remember that as per l.o. condition for any 
parent-node of S’: ∀i,j indices of clauses: if i<j 
then head-literal of Cj >= head-literal of Ci 
which means (because of the least-literal-rule) 
that no head-literal of a Cj can be instantiated 
before a head-literal of a Ci. 

don’t appear in S’, but in parent-nodes 
in the SRT. In that case the same 
argumentation as in the previous three 
cases applies. 
(Q.E.D.) 
 

Illustrations of Corollary 1 (Fig. 21): 
Base Clause-Sets of the form {… {a,X} 
..{b,Y} ..} (for +ve, monotone 2-SAT) 
where a<b can have SRTs of the form: 
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Note that all branches in both figures 
(Fig. 21&22) containing {b,Y} also 
contain instantiations of a only or X 
only or both. 
 

Lemma 2: Suppose S is an s.o. Set of a 
3-SAT-CNF-problem. The following 
are properties of its SRT: 
 

a) For any branch b: If i,j are edges 
corresponding to literal 
instantiations in b, i<j then i 
appears before j in that branch. 

b) For all common-nodes [q] and 
nodes [X],[Y],[Z], etc. (c.f. Fig. 2 
in Definition 5), NL q> NLs x,y,z, 
etc. 

c) HCNs as well as TCNs exist even 
for 2-SAT. 

d) Clauses belonging to the same 
block Bx, x block literal, can only 
be scattered between mutually 
exclusive branches if Bx is at least 
partially embedded73 in another 
parent block. 

e) A CN [q] formed within a block Bx 
through +ve as well as -ve edge- or 
branch-literals x is called: Double-
Sided CN from the perspective of x, 
DSCNx. Such an x is called 
distinguished literal for [q]. A CN 
[q] formed within a block Bx 
through only +ve or only -ve edge- 
or branch-literals x is called: 
Single-Sided CN from the 
perspective of x, SSCNx, x is called 
non-distinguished literal for [q]. If 
for a CN [q] there is no 
distinguished literal x such that the 
CN is DSCNx, then [q] is called 
simply SSCN. If a non-
distinguished literal x for a CN [q] 
formed in steps <k is used to 
augment the size of [q] in step k, 

                                                 
73 Defined in the proof below. 

i.e., x is instantiated in a clause 
added to the clauses of [q] in k, 
then x is called: CN-Augmenting 
Literal (CNAL) for [q]. For all CNs 
[q] in an SRT it is true that: 
i. DSCNx-nodes which are not 

SSCNy for any y can only be 
augmented in size when 
supported through parents in 
block Bx 

ii. SSCNs may split74, but only 
before augmented to sizes>1. 

iii. If x is a CNAL for [q] in step k 
then it cannot be used to split it 
in any further step >k. 

iv. If the size of [q] is augmented 
using any CNAL in step k to 
become >1, then it cannot be 
split in steps >k. 

f) For tCNs [q] in an SRT: [q] can be 
augmented to sizes >1 using a 
distinguished literal x within a 
symmetric block Bx. It may : 

1- Never split after being 
formed if Bx remains 
symmetrical or 

2- Avoided altogether when 
relaxing the l.o. 
condition for symmetric 
or dissymmetric blocks 
to a special l.o.u. one 
called l.o.s. 75 

3- Imposing l.o.s. or l.o. 
conditions on symmetric 
or dissymmetric blocks 
generates the same SRT.  

 
 

                                                 
74 We are using here the loosely defined 
formulation of a "split" discussed in the 
introduction, the exact formulation being 
subject of Section C. 
75 Definitions of symmetric and dissymmetric 
blocks as well as the l.o.s. condition is shown in 
the proof below. 
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¬x 

¬a 

…. 

{¬x,¬y}{x,y}…… 

…. 

    {¬x,y}{x,¬y}… 
… 

a 

¬x 

x 

…. 

… 

¬y 

…. 

 

 
y 

Proof: 
a) Suppose i<j: Because of the least-

literal-rule the only way literal i can 
be instantiated after j in a branch b 
would be either that j comes before 
i in the same clause thus breaching 
Condition a) in Definition 1 or 
clauses containing i are resolved 
after clauses containing j in b (as 
per Definition 2 of GSPRA) which 
means i is a new variable from the 
perspective of clauses containing j. 
But in that latter case i should have 
been >j as per Condition 1 c).  

 
b) This follows immediately from a) 

(recall that node [q] has two edges 
coming out from it marked q and 
¬q where those edges come after 
x,y,z,.. edges). 

c) If a node is HCN as per Definition 
5, then Fig. 23 shows this for the 
monotone case in the following 
example (where a=0, b=2, 
[N]={3,4}): 

 

 
 
 
 
 
 
 
Figure 23: HCN-node 
 
 
The below tree in Fig. 24 demonstrates the existence of TCNs in ordinary 2-SAT-SRTs 
which are s.o. (lo.o. Sets are similar). 
 
 
 
 
 
 
 
 
 
Figure 24: TCN-node 
 

d) Suppose S={{a,¬x,¬y}{b,¬x,y}{c,x,¬y}{x,y,z}}, a<b<c<x<y<z, which is 
obviously l.o. The question is: Can we scatter clauses of the block 
Bx={{ x, y}{ x,y}{x, y}{x,y,z}} between mutually exclusive branches of an 
SRT so that it looks for example like: 
 

 
 
Figure 25

1 

¬0 

TRUE 

{1}{2}{3,4} 

{0,1}{0,2}{3,4} 

    {3,4} 
{2}{3,4} 

FALSE 

0 

¬1 

3 
¬3 {4} 

TRUE 
FALSE 4 

¬2 

FALSE 

¬4 

2 

¬0 

{¬3} 

{1}{¬2,¬3} 

{0,1}{¬0,2}{¬2,¬3}  

    (2){¬2,¬3} FALSE 

0 

¬1 

2 

{¬2,¬3} 

FALSE 

2 

TRUE 

¬2 

1 

¬2 
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where different members of Bx can be 
found in different nodes mutually 
excluding each other? 
The answer is that this is only possible 
if a=b=c, i.e., if 
S={{¬a,¬x,¬y}{a,¬x,y}{¬a,x,¬ }{x,y,
z}} for example. The obvious reason for 
that being the fact that exclusivity of 
branches in any SRT relates to different 
instantiations of one and the same 
literal. To be able to disperse at least 
some members of Bx, a common literal 
in a parent-set needs to be instantiated 
in two mutually exclusive ways. Note 

that the clause {x, y, z} is included in all 
branches, since its leading literal is the 
block literal of Bx (not Ba) and x>a. Bx 
of the form seen here is called partially 
embedded. 
e) Suppose a DSCNx [q] which is not 

an SSCNy for any y is formed 
within a block Bx through 
instantiations of variables such that 
two branches of the SRT contain 
edges marked with x (¬x 
respectively) connect to the CN as 
in Fig. 26 (left): 

 
  

 
 
 
 
 
 
 
 

Figure 26: DSCNx [q] formed within block Bx. SSCN augmenting. 
 

Obviously, any clause C attempting 
to augment the size of [q] cannot 
use for this the distinguished literal 
x, because otherwise a split would 
occur as two different derivations 
of C must result from any 
instantiation efforts. Thus, the only 
way to increase the size of [q] in 
that case is by adding clauses from 
a block By different from Bx to the 
parents of [q] before propagating 
them down to [q], y>x. This is 
precisely what is done when [q] is 
supported (c.f. Definition 5, Section 
A). 
On the other hand: Suppose [q] is 
an SSCN (SSCNx and SSCNy as 
well Fig. 26 right where x<y). The 
question is: Can this node split after 
its formation and before a clause C 
attempts to augment it? This is 
theoretically possible if a clause 
containing literal y is used. Clauses 

containing literal x may only cause 
such a split if x doesn’t occur 
before y in that branch. Now 
suppose its size is to be augmented 
to become >1 using clause C, then: 
Only one derivation of C (in Fig. 
26: C’) can be propagated down to 
[q] from all possible directions. C’ 
must be the result of instantiating 
none, one, or more than one literals 
of C in the same way throughout all 
branches. Obviously y in Fig. 26 
cannot be CNAL, since it is not 
instantiated in any other branches 
containing x and can thus cause a 
split as mentioned before. This 
leaves x as the only possible CNAL 
in the constellation illustrated in 
Fig. 26. An edge marked x must 
exist in the branch containing y 
prior to edge y (in the dashed lines 
region) otherwise C’ cannot be the 
same for all edges. After [q] is 

{ } 

    (x){ } 

x ¬x 

    {x,…}.. 

x 

{x,…}..+C 

{ }+C’ 

    (…){ }+C 

x 

{..}..+C 

y 
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augmented in size with C’ in step k 
(through CNAL x): Any clause CC 
attempting in a further step to split 
[q]+C’ through instantiations of x 
will have no effect on this CN, 
since all branches contain an edge 
marked x. Meaning: If CC uses a 
+ve literal x, it’s value shall become 
TRUE and neither CC nor any of 
its derivations will be propagated 
down to [q]+C’. If on the other 
hand, CC uses a -ve literal x, one 
and the same derivation CC’ shall 
be propagated through all branches 
and the size of [q]+C’ is increased 
again. Thus, CC cannot split [q]+C’ 
using CNAL x in any step >k. What 
about y? Since [q] was augmented, 
C must have been free of y. Now if 
CC contains y, this would mean a 
parent Clause Set of the form 
{..y..}{<no y>}{..y..} in some node 
which is not l.o. 76 
Putting all this together: GSPRA’s 
generic way of augmenting the size 
of a CN [q] in step k using a clause 
C is depicted in following Fig. 27 
where a<b<x. Assuming [q] is 
augmented in size through CNALs 
(otherwise it can only be 
augmented in size when supported 
as seen above or using 
distinguished literals before a tCN 
is created as seen in the next point). 
This means C belongs to either Bx, 
Ba, or Bb (head-literal of C and 
potential CNAL being: x or a or b 
respectively). Instantiation of one 
of those literals must result in one 
single derivation C’’ propagated 
through all branches increasing the 

                                                 
76 Clause-Sets of the form: {... {y,...},{<no 
literal y>},{.,y,..} ...} are not l.o. for any y, 
because in l.o. Sets heads of clauses (at least) 
must be sorted in ascending order. This form 
means that the head of {<no literal y>} can only 
be >y contradicting the occurrence of y again in 
the last clause in any position. 

size of [q] as before. Obviously, 
literal x cannot be CNAL as just 
demonstrated, Literal b cannot be 
used either since a is an edge-literal 
of [q] and hence b is not being 
instantiated at all on that branch 
contradicting what is happening on 
the branch containing N4+C’’, i.e., 
those two branches cannot produce 
the same derivation if a<b. This 
leaves literal a only as CNAL. For 
a to be CNAL the newly added 
clause C must be equal to 
{¬a} C’’ where literals b, x are 
not ∈ C’’.77 [q] must be SSCNa 
and all dashed lines reaching from 
the Base-Node to N2, N3,N4 must 
have edges marked with a similar 
to the branch of N1. Otherwise the 
same derivation C’’ cannot be 
propagated from those directions. 
Let us now try to split the 
augmented node {q}+C’’. Any new 
clauses from Bx or Bb attempting 
this will breach the l.o. condition in 
nodes N2,N3 and N4, since they 
already contain C’’ which is free 
from both b,x. 
A new clause from Ba cannot do 
this, since a is CNAL. Thus [q]+C’’ 
cannot be split in any step >k. 

 

                                                 
77 C cannot be {a} C’’, because C would then 
get the value TRUE when instantiated through 
edge a and no derivation would be passed down 
to [q] from that direction. Also: C‘‘ has to be the 
same derivation propagated from all branches to 
[q]. Therefore, it cannot contain neither b nor x 
whose existence would cause different 
derivations through N1,N4 and N2,N3 
respectively. 
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Figure 28 
 

…
. 

¬y 

a x 

¬  

 

 
 

Figure 27: Generic way of augmenting a CN 
 

Here is yet another argument 
showing the same: Suppose a CN 
[q] is augmented using any CNAL 
a in step k, then, a cannot be used 
to split [q] in any step >k as seen 
above. It is then sufficient to show 
that [q] cannot be split in steps >k 
neither using any distinguished 
literal x nor any non-distinguished 
literal y which is not a CNAL. For a 
distinguished x: [q] could have only 
been augmented in size in k through 
parents who already have clauses 
containing a or its negation from a 
block By, y>x otherwise a split 
would have occurred. Any attempt, 
then, to split [q] in steps >k using 
clauses containing x assumes 
therefore parent-nodes containing 
Clause-Sets of the form: BxBy{..x..} 
which are not l.o. 
For a non-distinguished literal y 
which is not CNAL: [q] could not 
have been augmented in step k with 
any clause containing y or its 
negation (otherwise it would have 
been a CNAL similar to a if all 
branches agree on its instantiation 
or a split would have occurred if 
they disagree). If this is the case 
then any attempt to spilt [q] using y 
in steps >k must assume some 
parent Clause-Sets of the form: 
By<no y>{..y..} (c.f. footnote 76) 
which are not l.o. either. 
 
 

f - For tCNs: A block Bx is called 
Symmetric Block (SB) if –ve 
and/or +ve instantiations of block 
literal x result in the same Clause 
Set. It is called Dissymmetric 
Block (DB) if –ve and/or +ve 
instantiations of block literal x 
result in Sets S1, S2 respectively 
and either S1 ⊆ S2 or S2 ⊆ S1. A 
tCN is obviously per Definition 
(see linear expansion Property 2 
above) created in an SB, since two 
nodes can only be merged into one 
if their respective Clause Sets are 
equivalent with respect to a given 
instantiation. The following 
example illustrates a case where 
such a tCN is formed and then split, 
because Ba became  dissymmetrical 

(Fig. 28).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

b 

¬…. 

{ }+C’’ 

N2+C’’ 

Base-Node +C 

    N1+C 

N4+C’’ N3+C’’ 
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Note that this split could only occur 
because literal a was distinguished for 
tCN {b,c}. If clauses are sorted such 
that the Base-Set becomes {¬a,b,c} 
{¬a,d,e} {a,b,c}, this situation is 
prevented like in Fig. 29: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note also that if the Clause Set is sorted 
the other way round: 
{{a,b,c}{¬a,b,c}{¬a,d,e}} the split still 
occurs, i.e. to prevent this type of splits 
altogether, sorting must take into 
account the number of clauses 
containing –ve and +ve instances of the 
leading literal and prioritize the 
instantiations with the most clauses. We 
call this additional condition on sorting: 
l.o.s (linearly ordered, but stretched). Is 
imposing l.o.s. conditions on SBs and 
DBs really necessary, i.e., how 
expensive is it to allow this type of 
trivial splits to occur? Obviously, {b,c} 
is copied once. This becomes only 

expensive if more clauses are added to 
the tCN before a split occurs. One such 
situation can happen with the Clause 
Set: 
S={{¬a,b,c}{¬a,d,e}{a,b,c}{a,d,e}}. 
Here the tCN is {{b,c}{d,e}} and of 
size 2. In that case tCN {b,c} is 
augmented in size using the 
distinguished literal a before the tCN is 
formed. Any further clause of the form: 
{a,..} or {¬a,..} causes therefore a split 
of a node of size 2 which, if admitted in 
its general form, may create a bigger 
number of new nodes in any step78. It 
seems at first sight that imposing l.o.s. 
on SBs and/or DBs is a must. Such an 
undertaking comes with the additional 
complication that sometimes l.o. and 
l.o.s. conditions are contradictory, i.e. 
some Clause Sets may be either l.o. or 
l.o.s, but not both79. Fortunately tCNs 
are only formed and split in SBs and 
DBs respectively. This means that 
applying the least literal rule to the 
whole block will result in both cases in 
the same Clause Sets in children nodes 
whether the block is l.o.s. or l.o., since 
the difference between those two 
conditions lies merely in the positions 
taken by negative and/or positive 
occurrences of the least literal in 
respective clauses. This difference has 
no effect on the overall instantiation 
effort of the least literal in the base 
Clause Set. Such a property makes 
SRTs - resulting from imposing any of 
those two conditions on the whole block 
- equivalent 80. Counting the number of 

                                                 
78 In this paper the effect of allowing splits of 
CNs of rank <3 and sizes >1 is not investigated 
except for the tCN case on hand here. 
79 Such a case is S={{a,b,c}{¬a,b,d}{a,c,e}} as 
the reader may wish to verify.  
80 May be formally shown using induction on 
the length of blocks, realizing that top-parts of 
SRTs applying any one of those conditions are 
always equivalent. This is not done here to 
avoid unnecessary length.  

Figure 29 
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unique nodes resulting from imposing 
l.o. conditions being subject of section 
E, it remains here to ask: What if SBs or 
DBs are scattered between different 
nodes? How can this influence the 
equivalence between l.o. and l.o.s. 
conditions for SBs and DBs ? As seen 
in point d) of this lemma: Blocks can 
only be scattered when they are at least 
partially embedded in other blocks. This 
means that scattered SBs or DBs always 
have common base nodes like in the 
below constellation (Fig. 30): 
 
 
 
 
 
 
 
 
 
As long as all nodes are guaranteed to 
be l.o. in such an SRT, no node shall be 
containing clauses of the form: 
{{x,..}{y,..}{x,..}} for some x and y. 
This means that scattered fragments of 
block Ba have, with respect to the tCN, 
always priority on other blocks within 
the same node as seen in the figure. 
Here again: As the difference between 
l.o. and l.o.s. conditions within those 
fragments is related only to positions 
and priorities of clauses containing the 
signed/unsigned least literal a, the order 
of clauses within such fragments and 
hence within the overall, scattered Ba is 
irrelevant for any instantiation effort 
done using the least literal rule (here 
applied on a) either during the 
formation of this tCN or during its split. 
L.o.s and l.o. blocks produce therefore 
even when they are scattered the same 
SRTs.  
(Q.E.D.) 
 
 
 

In furtherance we show detailed sample 
cases of size augmentation trials within 
parent-instantiation blocks for the 
purpose of clarification of findings of 
Lemma 2: 
 

Case 1: All parent-sets belong to the 
same block (in the example above of 
Fig. 28). For tCN {b,c} try to increase 
its size by adding clauses to 
S={{¬a,b,c}{a,b,c}}. If we add a clause 
of the same block Ba such as 
{¬a,¬b,c},{a,¬b,c},{¬a,d,e} or {a,d,e} a 
situation like the above occurs and 
{b,c} is always split81. In all those cases 
Ba becomes dissymmetrical. 
In the previous example, S only had one 
parent-node containing the block Ba of 
the tCN {b,c}. Here, a situation where 
such a tCN has parents from different 
nodes in different branches although 
one and the same block (Bb) is being 
instantiated by direct-parents (Fig. 31). 
A split is occurring for tCN {c}. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
81 The reader is encouraged to check this by 
him/herself. 

Figure 30 

{a,b,c}{a,d,e}… {¬a,b,c}{¬a,d,e}.. 

{b,c}{d,e}… 

¬a a 

Figure 31 
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Can we make the size of {c} bigger 
than 1 in any step before a split occurs 
afterwards? The answer is: No! If we 
use clauses of Ba like {a,b,d} or 
{¬a,c,d} then {c} is split, because Bb 
loses its symmetry. If we take clauses 
like {b,c,d}, {¬b,¬c,d} or {¬b,c,d} from 
block Bb similarly happens. For all 
clauses from Bx, x>b, like {c,d,e} or 
{¬c,d,e}, this tCN will be supported and 
cannot split in any further step.  
Case 2: Parent-sets belong to different 
blocks. One interesting constellation is 
seen in below Fig. 32 where block By 
has only one edge (either +ve or -ve) 
going to the tCN82.  
 
 
 
 
 
 

Figure 32 
 
 
 
 
Let us try to increase the size of [q] 
through clauses from block By, i.e., 
attempting to use y as CNAL. A clause 
C attempting this will have two 
derivations, one in which y is not 
instantiated and one in which it is. This 
makes [q] split. Thus, for this case as 
well, [q] cannot be increased in size 
before a split occurs. Another practical 
example : Set S={{a,¬b,d}{b,c,d}}. The 
following tree (Fig. 33) contains two 
tCNs {c,d} and {d}: 
 
 
 
 
 
 
 

                                                 
82 Note that if By is allowed to have two edges 
of opposite signs linked to [q], making [q] a 
DSCNy, any attempt to augment the size of [q] 
using By shall clearly result in a split as for Bx. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Now let's try to increase the size of tCN 
{c,d} with any clause from block Bb or 
Bc with an example (Fig. 34) for a 
clause from Bb: {b,e}83 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now we try to split {{c,d}{e}}. This 
cannot be done using any Ba-clause 
(because of the l.o. condition) or Bb-
clause, because b is CNAL. What about 
the tCN {d}? If we attempt to augment 
its size using clauses from Bb like {b,e} 
(the one we used above) it will be split 
as just seen before. Let us try {c,e} 
from Bc. In that case we have the 
following picture (Fig. 35) where {d} is 

                                                 
83 The reader is encouraged to try other 
examples of the mentioned blocks. 

Figure 33 
 

Figure 34 
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Figure 35 
 

also split and the split results in a 
breach of the l.o. condition as well84. 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
84 The reader is encouraged to try other 
possibilities from blocks Bb and Bc (like {¬b,e} 
or {¬c,e} for example). 

Remark 1: (TCNs occur in s.o. Sets of 
monotone, +ve 2-SAT when the least-
literal/head-clause-rule of GSPRA is 
dropped). 
The above assumes the application of 
GSPRA with a least-literal/head-clause-
rule. Fig. 36 below shows two 
examples, the resolution-tree for the 
same Set ({0,1}{1,2}{2,3}), i.e, for the 
monotone +ve 2-SAT case when the 
least-literal/head-clause-rule is dropped 
(left) and when it is applied (right). 

Figure 36: The left tree shows a TCN appearing in case the clauses {1,2}{2,3} are instantiated along 
the literal 2 common to both clauses (instead of 1, the least-literal, as the rule instructs). In the right 
tree an HCN is formed instead ({2,3}). 
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{X,a} {X,b} {a,c} 

x ¬x 

{b} {a,c} 

{c} 

¬a 
 

a 

{c} 

{X,c} 

{a,c} 

{b} {c} 

¬a 

FALSE  b ¬b 
 

{a} 

Remark 2: (TCNs in resolution-trees of lo.o. Sets for monotone +ve 2-SAT Type 1 
TCN) 
Suppose S is an lo.o. Set, i.e., at least for some Clause-Set S’ in a node of the SRT, S’ is 
l.o.u., then the following form of a TCN exists: 
 
 
 
 
 
 
 
 
 
 
 
Figure 37: Type 1 TCN 
 
Remark 3: (TCNs in resolution-trees of 
lo.o. Sets for monotone +ve 2-SAT 
Type 2 TCN).  
In the previous example for a TCN, 
literals written on edges leading to the 
TCN (called: TCN edge-literals) were 
identical. 

The constellation in Fig. 38 below 
shows an example where those literals 
are different. Literals on edges of 
branches leading to a TCN are called 
branch-literals of the TCN. Every edge-
literal is a branch-literal, but not vice 
versa. 

1 ~
2 

{X,a} {X,t} {a,t}  

x ¬x 

{a} {t} {a,t} 

{t} ¬a 
 

a 

{a, t} 

Figure 38: Branch-literals of the TCN where b is an edge-literal for node {c} 
    while a and ¬X are branch-literals 
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C) STUDY OF SPLIT CONDITIONS IN 
     SRTs 
 

Definition 8: An SRT produced by 
GSPRA is said to possess a split if: 
Either node n containing Clause-Set S 
constructed in step k is duplicated one 
or more times in steps >k together with 
all or parts of its sub-nodes, the cause of 
this duplication being that S is resolved 
with a clause whose least-literal is new 
and has an index < all or any indices of 
head-literals in S (called: N-splits).  
Or a CN [q] constructed in step k 
and/or any of its sub-nodes are 
duplicated with variations85 one or 
more times in steps >k (called: CN-
splits). 
As examples of N-splits have been 
discussed in detail in Section I, we 
focus on CN-splits in furtherance: 
 

                                                 
85 Different variations of the duplicated CN 
correspond to the resolution of different 
derivations of a newly resolved clause C with 
the CN. 

C-1 Example for a CN-split of a 
type 1 TCN node: 
The reason why different CN-splits 
occur is generally that different 
derivations of C get resolved with a CN 
through different branches of the SRT 
linked to this CN as mentioned before. 
New nodes [q]'=[q]+C' are formed 
where C' is a possible derivation. 
[q'] is called: split-node. 
This situation is illustrated in the below 
Fig. 39. 
Split-nodes are causes of exponential 
behavior of GSPRA when it is applied 
to a.a. or l.o.u. Clause-Sets. 

X Y Z …….. 

Q 

Base-Node 

C (resolved in step >k) 

C' C'' C''' 

Figure 39 
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Figure 40: A concrete example for the ordinary 2-SAT case. 
 
C-2: CN-splits in s.o. Sets 
Important properties of CNs in s.o. Sets 
are shown in the following lemma. 
 

Lemma 3 (a): HCNs in SRTs of a 3-
SAT-CNF s.o. Clause-Set S generated 
by GSPRA cannot be split. 
 

Proof: Suppose [q] is such an HCN 
formed in step k, i.e., [q] is head-literal 
of a clause Ci of S which is the first 
clause in [q], then according to Lemma 
2 b), all parent-nodes in the branches 
for which [q] is a sink, [X],[Y],[Z] have 
NL q> NLs x,y,z (edge-literals). q is 
also >s,t,v.., where s,t,v.. <x,y,z,.. and 
s,t,v,... are branch-literals which are not 
edge-literals. To be able to split [q] in 
any step >k, a new clause C causing 
such a split needs to traverse branches 
leading to [q] and contain literals from 
the Set {x,y,z,..., s,t,v,...} making the 
overall value of C =TRUE according to 
respective signs. This cannot be the 
case, because Ci ={q,..} ∈ S has 
already been processed in all parent-sets 
to form the HCN [q] and parent-sets are 
all l.o., i.e., i,j, indices of clauses: if i<j 
then head-literal of Cj >= head-literal of 
Ci, because of the sorting condition (c.f. 
Definition 1 b), Section A). Any head-
literal of C must therefore be >=q. 
(Q.E.D.)  

Lemma 3 (b): CNs of rank 3 in SRTs 
of 3-SAT-CNF s.o. Clause-Sets cannot 
be split either. 
 

Proof: Suppose [q] formed in step k is 
any CN including in its Clause-Set a 
clause {x,y,z}. To be able to split [q] in 
any step >k, a new clause C causing 
such a split needs to traverse branches 
leading to [q] and contain literals from a 
Set of branch- or edge-literals leading to 
[q] which are all <x making the overall 
value of C =TRUE according to 
respective signs. This cannot be the case 
because of the l.o. condition imposed on 
all parent-nodes as seen in 3(a) which 
requires the head of C to be >=x.  
(Q.E.D.)  
 

Lemma 3 (c): In any resolution-step: 
SRTs of 3-SAT-CNF s.o. Clause-Sets 
possess at most CN-splits of size 186 or 
trivial Block-Splits (BS). BS relate to 
tCNs and can be avoided altogether. 
The maximum number of size 1 splits 
possible for each CN is RCC3-SAT. 
 

Proof: We have just shown that no 
splits for rank 3 nodes can exist in s.o. 
SRTs. For nodes of rank<3: Suppose [q] 
is such an arbitrary CN produced in 
steps <k. According to the least-literal-
rule: To split [q] in steps >=k, the new 

                                                 
86 We call splits of size 1 nodes : Size 1 splits. 

{2!,5} 

{2!,5} 

{5} 
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clause(s) causing the split must possess 
a head-literal which is equivalent to 
some least-literal (= edge- or branch-
literal) instantiated in a parent-node 
prior or during the creation of [q]. 
Because of the l.o. condition: This 
leaves out supporting parents as they 
already started (per definition) different 
blocks than the ones which they were 
instantiating when [q] was created. 
Direct-parents are also excluded, since 
they cannot admit any new clause with 
a head-literal <q87. A split of a rank<3 
node in any step >=k can thus only 
occur if the new clause belongs to the 
same block as the one some or all of its 
parents are still instantiating.  
In such a case : DSCNs and SSCNs 
may produce size 1 splits before their 
sizes are augmented as seen in Lemma 
2 and its subsequent examples. As per 
Lemma 2 also: If a new clause C of a 
parent block succeeds in augmenting 
the size of [q] to become >1 using any 
non-distinguished literal (=CNAL) in 
step k, [q] will not be able to split in any 
further steps >k (Lemma 2-e). On the 
other hand, trying to augment the size 
of [q] using distinguished literals for 
DSCNs can be done before the 
formation of [q]. [q] is, then, a tCN 
formed in step k, but augmented in size 
in steps <k. Such nodes may - as per 
Lemma 2-f - be avoided altogether 
using l.o.s. conditions on SBs and/or 
DBs.  
If size 1 splits exist in any step k, then 
one copy of a size 1 CN built in steps 
<k is needed in the worst case. What 
happens if the CN is a sink of many 
nodes, not just two as in the examples 
above? Every derivation of a newly 
resolved clause may cause a different 
split of the CN. As the number of 
possible derivations GSPRA produces 
for newly resolved clauses is always 

                                                 
87 c.f. Definition 5 in Section A 

RCC3-SAT88, only RCC3-SAT copies of a 
size 1 CN is produced in any step in the 
worst case89. 
(Q.E.D.)  
 

Lemma 3 (d): All IRTs of a 3-SAT-
CNF Clause-Set S are free of non-trivial 
splits (also called: Big Splits, BigSps)90 
iff ∃3-SAT-CNF Clause-Set S’:S’ is 
s.o., S=S’. 
 

Proof: If S=S’ is an s.o. 3-SAT-CNF 
Clause-Set, then all Clause-Sets formed 
during resolution must be l.o. per 
Definition 4. N-splits cannot occur in 
any IRT, because otherwise (per 
Definition 8) there must exist a clause C 
resolved with a Clause-Set Sn of some 
node n of an IRT whose least-literal is 
new and has an index < all or any 
indices of head-literals of clauses in Sn 
so that Sn C contradicts the l.o. 
condition imposed. For rank 3 CN-
splits: Lemma 3(a) and (b) above show 
that any IRT of S is free of them. 
Lemma 3(c) just showed that no splits 
of sizes >1 exist as well. 
Other way around: Consider IRTs of a 
3-SAT-CNF Clause-Set S which don’t  
possess BigSps. This means that neither 
Condition b) nor c) of Definition 1 were 
breached in course of the resolution of 
Clause-Sets forming those IRTs (their 
breach causes N- and rank 3 CN-splits 
respectively), i.e., all Clause-Sets 
formed in subsequent IRTs were l.o. 
which means that (including the final 
one) all IRTs were s.o. Put S’=Base 
Clause-Set of the final SRT. 
(Q.E.D.) 
                                                 
88 Because the number of possible permutations 
of a 3-SAT clause is constant (RCC3-SAT). 
89 This observation is important and shall be 
used in Section E when properties of GSPRA+ 
are discussed and the maximum number of 
nodes produced in each step is calculated. 
90 BigSps include therefore : Both N- as well as 
rank 3 CN-splits in addition to any splits of 
sizes >1 
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Lemma 3’s main statement is that 
GSPRA - when working with 3-SAT-
CNF s.o. Sets - doesn’t copy any sub-
tree solving a problem of the same order 
of magnitude as the original one. As 
seen in above illustrations of CN-splits 
in a.a. Sets, this was the reason for 
doubling sizes of IRTs during 
resolution-runs. It can be shown that for 
lo.o. Sets such an exponential behavior 
still exists91. Moreover, splits which are 
still possible in s.o. Sets are of trivial 
nature, i.e., not costing more than a 
constant amount of copies of size 1 CNs 
(in each step) in the worst case. 
Fig. 41-a resumes what has been 
discussed in Sections II-B and II-C for 
a.a., lo.o. and s.o. Sets while Fig. 41-b 
shows findings of Lemmas 2 and 3 
related to splits of CN types : 

                                                 
91 Take the case of l.o. Set S={{0,1,2}{0,3,4}} 
when resolved with {2,3,5} for example. 
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D) CONVERTING A.A. 3-SAT-
CNF CLAUSE-SETS TO S.O. AND 
LO.O. SETS 
 

Above lemmas were concerned with 
s.o. Clause-Sets which are generally not 
present as such. Can we convert 
arbitrary Sets to s.o. or lo.o. ones? To 
answer this question we need to 
investigate how to convert a.a. Clause-
Sets92 to l.o.u. and l.o. ones (c.f. 
Definition 1). 
 

Definition 9: The Clauses Renaming 
Algorithm (CRA) is a procedure which 
takes an a.a. Clause-Set S as input, 
renames its literals yielding a new S' 
(equivalent to S93) as output which is 
guaranteed to be l.o.u. This procedure 
consists of the following steps: 
 
 

1. Index clauses in S (starting with 0) 
in ascending order. 

2.  For each clause Ci: 
a) Arrange literals in ascending 

order within Ci so that literals 
which appear more often in 
other clauses come before those 
which appear less often or which 
only appear in Ci. This condition 
shall hereafter be called: 
Renaming Precedence Condition 
(RPC). 

b) For all literals, one by one, 
arranged in step a) do the 
following: For any literal in the 
clause not having already a row, 
create a new row and write 
column values TRUE or FALSE 
according to whether the literal 
appears in the corresponding 

                                                 
92 Converting an arbitrary Clause-Set to an 
almost arbitrary one (a.a.) being a trivial 
exercise needing only sorting literals inside each 
clause in ascending order and taking care that 
clauses have unique occurrences. 
93 here: Logical, not Syntactical Equivalence. 

clause or not. The matrix 
resulting from this step is called 
Connection Matrix of S. Rows 
in this matrix represent 
variable/literal names/indices 
while columns represent clauses. 

 
Example: If S = {{0,5} {0,2} {1,3} 
{1,4} {2,3}}, then the Connection 
Matrix of S is: 
 

 C0 C1 C2 C3 C4 
0 True True False False False 
5 True False False False False 
2 False True False False True 
1 False False True True False 
3 False False True False True 
4 False False False True False 

 
3. Rename all variables in the 

Connection Matrix in ascending 
order. The matrix in the example 
thus becomes: 

 

 C0 C1 C2 C3 C4 
0 True True False False False 
1 True False False False False 
2 False True False False True 
3 False False True True False 
4 False False True False True 
5 False False False True False 

 

4. Reconstruct the clauses again using 
the new variable names. This 
reconstruction may be done by 
simply substituting each literal in 
the original Clause-Set with its new 
literal name/index. 

 

The new clause list for the above reads 
S: S' = {{0,1}{0,2}{3,4}{3,5}{2,4}}. 
Note that S' is l.o.u. Note also that if we 
would want to convert S' to a l.o. Set by 
sorting clauses via their least-literals (as 
required by Condition b) in Definition 
1) we would get: S'' = {{0,1} {0,2} 
{2,4} {3,4} {3,5}} which is not 
fulfilling Condition c) because of literal 
3 (i.e., S'' is neither l.o. nor even l.o.u.). 
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To convert an a.a. Clause-Set to a l.o. 
Clause-Set, an extension to CRA is 
needed, introduced hereafter with some 
definitions: 
 

Definition 10: Mapping: N => N is a 
bijective function giving a literal index 
in a Clause-Set its new name/index after 
a renaming operation using CRA. If 
each literal index is given itself, the 
function is called trivial Mapping 
(tMapping). If a subset of literal indices 
is mapped to itself, this subset is called 
a Stable-Set. If all literal indices of a 
clause are members of a Stable-Set, it is 
called stable clause. If all clauses of a 
Clause-Set are stable, the Set itself is 
called Stable-Clause-Set. The function 
Mapping#: <Clause-Sets, Mappings> => 
Clause-Sets applies a certain mapping 
to a Clause-Set S changing the 
names/indices of all literals/indices in 
this Clause-Set to the new 
names/indices given by the mapping 
using direct substitution, the new 
resulting Clause-Set S' is said to be in a 
Variable Space (VS) different than S. 
If S and S' are Clause-Sets of the same 
node, then this node is called a Mixed-
Space Node (MSN) as opposed to 
Single-Space Nodes (SSN) whose 
Clause-Sets are not renamed. Trees with 
MSN nodes are called Mixed-Space 
Trees (MSTs). Trees with only SSNs 
are called Single-Space Trees (SSTs). 
Example: 
 

For S = {{0,5}{0,2}{1,3}{1,4}{2,3}} 
and S' = Mapping# (S,M) = 
{{0,1}{0,2}{3,4}{3,5}{2,4}} in the 
above example, Mapping M has the 
following extension: 
{{0,0}{5,1}{2,2}{1,3}{3,4}{4,5}}, 
Stable-Set = {0,2} 

 

Definition 11: The Clauses Renaming 
& Ordering Algorithm (CRA+) is a 
procedure which takes an a.a. Clause-
Set S as input and applies CRA 
repetitively generating a new mapping 

each time. After each step the 
intermediate Clause-Set is sorted as 
required by Definition 1b) before 
iterating back. This is done until 
renaming literal indices in two 
consecutive steps yields tMapping, i.e, 
the Stable-Set becomes equivalent with 
the Set LIT(S)) while the output Clause-
Set S' becomes l.o. A recursive pseudo-
formal description of this procedure is 
used in the below proofs: 
 

CRA+: 
Inputs: a.a. Clause-Set S 
Output: l.o. Clause-Set S’ 
Steps: 

4- set CurrentMapping = null, 
CurrentSet=S 

5- while (CurrentMapping != tMapping) 
 

i. currentSet=CRA(CurrentSet) 
ii. sort CurrentSet as instructed 

in Definition 1 b) 
iii. set CurrentMapping=Mapping 

passed by CRA 
6- S’=CurrentSet 
7- return S’ 

Example: Following this procedure for 
the above Set S = {{0,5}{0,2}{1,3} 
{1,4}{2,3}} applying CRA to get S' = 
{{0,1}{0,2}{3,4}{3,5}{2,4}} and a 
sorting step giving the above S''={{0,1} 
{0,2}{2,4}{3,4}{3,5}}. 
A new CRA-iteration will yield the 
following Connection Matrix: 
 

 C0 C1 C2 C3 C4 
0 True True False False False 
1 True False False False False 
2 False True True False False 
4 False False True True False 
3 False False False True True 
5 False False False False True 

 

It is then transformed to: 
 C0 C1 C2 C3 C4 
0 True True False False False 
1 True False False False False 
2 False True True False False 
3 False False True True False 
4 False False False True True 
5 False False False False True 
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Mapping: 
{{0,0}{1,1}{2,2}{4,3}{3,4}{5,5}}, 
Stable-Set: {0,1,2,5} yields 
S'''={{0,1}{0,2}{2,3}{3,4){4,5}} when 
applied on S'' which is l.o. already and 
needs no further sorting. Note that in 
the last matrix all literals are forming an 
ordered sequence which means that any 
further renaming would result in 
tMapping. This is the termination 
condition. 
 

Lemma 4: CRA is guaranteed to 
convert an a.a. Clause-Set S into a l.o.u. 
Clause-Set. It takes O(N*M) steps94 to 
do this for M = number of clauses, N = 
number of variables. 
 

Proof: c.f. the three conditions of 
Definition 1 for a Clause-Set to be 
l.o.u.: 
 

a) ∀ai,bijcij∈Ci+j: ai<bij<cij 
c) ∀x ∈ LIT(S), ∀C ∈ S: 

if x not ∈ LEFT(x,C) then 
∀y ∈ LEFT(x,C): x>y 

d) Clauses appear only once in S 
 

It is clear that a) and d) are fulfilled by 
any output of the CRA as they 
constitute the mere definition of a.a. 
Sets. For Condition c): Suppose some 
literal L in a clause Ci={... L ...} ∈ S' 
(S' = output Set) breached Condition c): 
This means that L is new in the clause 
sequence starting with C0 until Ci, but 
there exists L' to its left where L<L'. 
This cannot be the case, since any such 
L' would have to appear in a row before 
L in the connection matrix (step 2-) and 
thus get a smaller index in the renaming 
step 3-. For the complexity assertion: 
The number of cells to be created in a 
Connection Matrix is always N*M. 
(Q.E.D.) 

                                                 
94 Steps are invocations of primitive operations 
as usually understood in complexity analysis. 

Lemma 5: A Set S is l.o. iff it reaches a 
Stable-Set of literals equivalent to 
LIT(S) through application of CRA+. 
 

Proof: Suppose S is l.o. This means that 
it is fulfilling all Conditions a)-d) of 
Definition 1. Any attempt to use CRA+, 
i.e., rename the literals and then sort 
them, must generate a Stable-Set = 
LIT(S) after only one CRA- and sorting 
iteration, since otherwise (i.e., if a literal 
gets a new name/index after such an 
iteration) this would mean a breach of 
one or all of those conditions. Other 
direction: Suppose S reached such a 
Stable-Set through application of CRA+, 
i.e., CRA+ terminated. If S is not l.o., 
then it must be at least l.o.u. (because of 
Lemma 4). The only reason for S not to 
be l.o. would thus be that clauses are 
not sorted correctly. This is not possible 
because CRA+ can only become a 
Stable-Set equivalent to LIT(S) if two 
consecutive renaming iterations assign 
literals with the same names/indices, the 
first of which is followed per Definition 
by a sorting operation. 
(Q.E.D.) 
 

Lemma 6: CRA+ takes a number of 
steps which is O(M2(logM+N)). More 
precisely M CRA-iterations and M 
sorting operations95 (M = number of 
clauses in S, an a.a Set). 
 

Proof: (by induction on M) 
 

Base-Case: M=1: For S={a,b,c} CRA+ 
takes one CRA and one sorting 
operation to generate tMapping per 
definition. 
 

Illustration Case: M=296 
Let S={{a,b,c},{d,e,f}}={C0,C1} 

                                                 
95 Assuming that a sorting operation takes 
O(M log M) primitive operations. 
96 Monotone 3-SAT case is used here and in the 
next lemma (w.l.o.g.), since CRA+’s behavior 
does not depend neither on literal signs nor on 
clause breadth. 
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Case 1: No literals in common between 
C0 and C1: In that case a<b<c<d<e<f. 
S is l.o. No CRA- or sorting iterations 
needed.  
Case 2: Only head-literal in common: 
S={{a,b,c}{a,e,f}} for example97: 
Same as case 1, S is also l.o. 
No CRA or sorting needed. 
Case 3: Only middle-literal in common: 
S={{a,b,c}{b,d,f}} for example: S’ is 
converted after one CRA-iteration to 
S={{a,b,c}{a,e,f}}, because of 
Definition 9, 2a), Renaming Precedence 
Condition (RPC). 
Thus, no sorting needed. 
Case 4: Only tail-literal in common: 
S={{a,b,c}{c,d,e}} for example: S’ is 
converted after one CRA-iteration to 
S={{a,b,c}{a,e,f}} (RPC as well), no 
sorting needed. 
Case 5: Two literals in common: All 
forms are converted to the form 
S={{a,b,c}{a,b,d}} (RPC) requiring 
only one CRA-operation and no sorting. 
 

Resuming the Base-Cases M=1,2: 
Although we may not need CRA or 
sorting, CRA+ takes at least one 
iteration (i.e., one CRA- and one sorting 
operation) to generate tMapping and to 
terminate. 
 

Induction Hypothesis: For M clauses 
M CRA-iterations as well as M sorting 
operations are needed in the worst case 
to make S l.o. 
 

Induction step: For any additional 
clause CM+1 = {x,y,z} we have the 
following cases (c.f. Definition 11, 
pseudo formal procedure): 
 

1. x,y,z are new literals not 
appearing before in any clause 
Ci: This case is straightforward in 
that no sorting is needed, i.e., only 
CRA (renaming) in the worst case. 

                                                 
97 Another example could be: {{a,b,c}{b,e,f}}. 

2. One or more literals of x,y,z 
appeared in a previous clause: 
Suppose S={{0,1} {0,2,3} {0,4,5} 
{0,6,7} {2,8} {9,10} {11,12}} 
which is l.o. adding the clause 
{3,5,15}, then the following steps 
are required: 
a) S={{0,1}{0,2,3}{0,4,5}{0,6,7} 

{2,8}{9,10}{11,12}{3,5,15}} 
input 

b) S={{0,1}{0,2,3}{0,4,5}{0,6,7} 
{2,8}{3,5,15}{9,10}{11,12}} 
sort  

c) S={{0,1}{0,2,3}{0,4,5}{0,6,7} 
{2,8}{3,5,9}{10,11}{12,13}} 
CRA 

S in step c) is already l.o., i.e., for a 
Clause-Set of size M S={{a,b,..} {b,…} 
{d,…}…} where as per induction 
hypothesis it is assumed that it is l.o. 
and we add a clause containing one or 
more literals which appeared before 
(s,t,u,…) and one or more literals which 
are new (x,y,…), we note that S is l.o.u. 
A sorting step is what is required to 
align the new clause to its right place. If 
this step is done (c.f. step b)), then 
another CRA-step (c.f. step c)) 
guarantees both l.o.u (per Lemma 4) 
and sorting condition. This means that 
we need an additional CRA (renaming) 
as well as a sorting step for this case. 
 

Resuming the induction step: One 
additional CRA- and one additional 
sorting step is needed in the worst case 
for M+1 
(Q.E.D.) 
 

This section concludes with a lemma 
showing that any a.a. Set can be 
converted to a l.o. Set, i.e., application 
of CRA+ on any a.a. Set always 
terminates yielding the right result. 
 

Lemma 7: CRA+ terminates always 
converting any a.a. 3-SAT-CNF-Set S 
of size M to a Stable-Clause-Set. 
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Proof: (by induction on M) 
 

Base-Case M=1: For S={a,b,c} as seen 
in the Base-Case of Lemma 6, CRA+ 
terminates after one iteration yielding 
the Clause-Set S’={a’,b’,c’} where 
a’,b’,c’ are new indices/names for a,b,c. 
S’ is stable. 
 

Illustration Case M=2: Let 
S={{a,b,c}{x,y,z}}. As seen in all Base-
Cases for M=2 of Lemma 6: One 
iteration of CRA and one sorting 
operation converts S to a l.o. Set. This 
means any further iteration of CRA+ 
yields a Stable-Set (per definition of 
CRA+) letting the algorithm terminate. 
 

Induction Hypothesis: Application of 
CRA+ for a number of iterations k on an 
a.a. 3-SAT-CNF Clause-Set S of size M 
converts S to a Stable-Clause-Set (i.e., 
CRA+ produces M stable clauses after k 
iterations). 

Induction Step: Per induction 
hypothesis for S = M+1, there are M 
stable clauses in iteration k. Let 
C={x,y,z} be the clause which is not 
stable. After step k C’s position cannot 
be before any other stable clause 
C’={i,j,k}, e.g., as in {a,b,c}…{x,y,z} 
{i,j,k}…, because this would mean that 
CRA-operations will have to change 
indices i,j,k to new ones for C’ 
contradicting its stability assumption, 
i.e., C has to be the last clause in S. 
In that case, even if literals in C would 
not fulfill the l.o. condition for whatever 
reason other than sorting (because C is 
already in its place), further CRA-steps 
in iterations >=k guarantee to convert C 
into a stable clause (per definition of 
CRA+)98 causing CRA+ to terminate 
with a Stable-Clause-Set of size M+1. 
(Q.E.D.) 
 
 

                                                 
98 CRA renders {S ∪ C} l.o.u., i.e., any new 
literal v of C is >left(v) in {S ∪ C} after an 
iteration. 
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E) GSPRA+ FOR ARBITRARY 3-SAT-CNF CLAUSE-SETS 
 
It is possible to convert GSPRA to an algorithm using MSTs (called: GSPRA+) which 
produces for arbitrary Clause-Sets of 3-SAT-CNF-problems SRTs of similar properties 
as s.o. ones99. Consider the following programs written in pseudo code: 
 
GSPRA+(S): 

Inputs: Arbitrary 3-SAT-CNF Clause-Set S of size M 
Outputs: Final SRT 
Data Structure: list of Tuples: < Clause-Sets, Node index> (called: LCS) 
initially empty 
 Steps: -  

1- convert arbitrary clauses in S to a.a. ones (sorting literals inside each 
clause).  

2- choose a clause C0 which guarantees a minimal top-part of the SRT 
containing unique-nodes100. For that choice apply the below 
procedure SelectFirstClause. 

3- convert S to a l.o. Set using CRA+ 
4- convert C0 of S to an SRT in a way similar to the one described in 

Definition 2 
5- set IRT (Intermediate Resolution Tree) = SRT produced in 4 
6- for all the rest Clauses Ci of S 

a. convert Ci to an SRT  
b. IRT=Align(IRT,Ci) 

7- return IRT 

Align (SRT, C): 
Inputs: an SRT with base-node of size M, an a.a. 3-SAT-CNF-clause C 
Outputs: an SRT for a Base-Set of size M+1 

 Steps: 
1. Let n be base-node of SRT, S Clause-Set of n 
2. If M>1 

a. S ∪ C is l.o. 
i. set S’= S ∪ C, put S’ Clause-Set of n 

ii. instantiate C to become C’ and C’’ according to left- 
and right edges of n taking into consideration the 
least-literal/clause-rule of Definition 2 (respectively) 

iii. if (BaseSet(leftTree(n)) ∪ C’ is found in LCS)  
Then leftTree(n)= foundNodeIndex  
else leftTree(n)=Align(leftTree(n),C’), Store 
<BaseSet(leftTree(n)), NewNodeIndex> in LCS 

iv. if (BaseSet(rightTree(n)) ∪ C’’ is found in LCS)  

                                                 
99 Remember that s.o. Sets were SSTs not MSTs as the ones produced by GSPRA+. 
100 Recall that the top-part of an SRT of a node of size M contains at most k unique M-sized (THN) and k 
not necessarily unique <M-sized (TBN) nodes where k is the size of the first clause chosen (c.f. Property 
8 in Section B). The idea here is to produce top-parts with minimal unique-nodes. 
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Then rightTree(n)=foundNodeIndex  
else rightTree(n)=Align(rightTree(n),C’’), Store 
<BaseSet(rightTree(n)),NewNodeIndex> in LCS 

v. return SRT of n 
b. S ∪ C is not l.o. 

i. set S’= S ∪ C 
ii. convert S’ to l.o. using CRA+ 

iii. set S’ Clause-Set of n 
iv. separate last clause of S’, i.e., S’=S’’ ∪ A 
v. if (C<>A), i.e., the last clause in S’ is not C  

1. set SRT’= GSPRA+(S’’), i.e., rebuild the SRT 
for n once more  

2. set SRT of n = SRT’ 
vi. instantiate A to become A’ and A’’ according to left- 

and right edges of n taking into consideration the 
least-literal/clause-rule (respectively) 

vii. if (BaseSet(leftTree(n)) ∪ A’ is found in LCS)  
Then leftTree(n)= foundNodeIndex 
else leftTree(n)=Align(leftTree(n),A’), Store 
<BaseSet(leftTree(n)),NewNodeIndex> in LCS 

viii. if (BaseSet(rightTree(n)) ∪ A’’ is found in LCS)  
Then rightTree(n)=foundNodeIndex 
else rightTree(n)=Align(rightTree(n),A’’), Store 
<BaseSet(rightTree(n)),NewNodeIndex> in LCS 

ix. return SRT of n 
3. If M=1 

a. let S’= S ∪ C, put S’ Clause-Set of n 
b. if Convert S’ to become l.o. using CRA+ if it is not already. C 

is converted to C# 
c. for all nodes n’ of SRT , SS Clause-Set of n’:  

i. propagate C# to n’ instantiating it according to the 
edges in SRT leading to n’ so that it becomes CC. Use 
least-literal/clause-rule 

ii. set SS = SS ∪ CC 
d. return SRT of n 

SelectFirstClause(S): 
Inputs: an a.a. 3-SAT-CNF-Clause-Set S  
Outputs: a clause C from S 

 Steps: 
1- For all Clauses C’ in S: 

i. choose C’ to be first clause 
ii. for all possible literal arrangements in C’: 

1. set MinNumber = Number of unique-nodes resulting from 
instantiation of literals of C’ in the top-part of the SRT  
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2. if the newly calculated number of unique-nodes for C’ < 
previously stored MinNumber, then set 
MinNumber=newly calculated one, bestClause=C’ in the 
current literal arrangement 

2- return bestClause. 
 
E-1: Example for the usage of GSPRA+ on a.a. 3-SAT-CNF Clause-Sets101 
Let S = {{0,¬1}{0,2,¬3}{0,4,¬5}{2,¬6}{¬3,4,5}{4,6,7}} be an a.a. 3-SAT-CNF-set. 
Following are the steps taken as per the above description of GSPRA+: 
1- Step 0: S is already l.o. 
2- Step 1: End: The following SRTs (Fig. 42-45) are generated in subsequent steps 
                           using GSPRA+ 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
101 For the sake of simplicity in the example it is assumed that SelectFirstClause uses the shortest clause. 

Figure 42: T1 
:: 
 

Figure 43: T2 
:: 
 

Figure 44: T3 
:: 
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Figure 45: T4 
:: 
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From analyzing the above trees we 
realize the following: 
1. The number of unique-nodes which 

are not leafs increases in a non-
exponential way from T1 to T4: 
6,9,17,24. 

2. Trees T2,T3,T4 generated by 
GSPRA+ are MSTs (c.f. Definition 
10). 

3. All trees end with special sub-trees 
which have one distinguished 
clause tailing all their Clause-Sets. 
Those clauses are called alignment-
clauses. They are circled in the 
foregoing trees (Fig. 42-45). Trees 
possessing alignment-clauses are 
called aligned and are further 
defined below. They shall play an 
important role in understanding the 
way GSPRA+ works. 

4. As CRA+ is used for converting 
clauses and Clause-Sets to l.o., it 
might be the case that the original 
order of literals in clauses changes 
even deliberately in the new 
variable space (as allowed in step 
1.ii in SelectFirstClause procedure). 
Consider for example the Set 
S={{¬0}{1,¬2} {1,¬5} {¬2,3,4} 
{3,¬4}{3,5,6}}102. CRA(S)={{¬0} 
{1,¬2} {1,¬3} {¬2,4,5} {4,¬5} 
{3,4,6}} where M(5)=3, M(3)=4, 
M(6)=6, for the last clause {3,5,6} 
thus changing places of literals in 
that clause. GSPRA+ has therefore 
no property similar to the linear 
derivation property (Property 3) of 
GSPRA. 

5. Choice possibility of both clauses 
and literal arrangements in the 
SelectFirstClause procedure enable 

                                                 
102 This is an intermediate Set produced by 
CRA+ while converting {¬1} {2,¬3} {4,¬5} 
{2,¬6} {¬3,4,5} {4,6,7} to {¬0} {1,¬2} 
{1,¬3} {¬2,4,5} {3,4,6} {4,¬5} in T4. 

GSPRA+ to implement any strategy 
producing an SRT whose Clause-
Sets are all l.o. provided that this 
strategy minimizes the number of 
unique-nodes in its top-part. This is 
an important property to be used 
later. 

E-2: Node Equivalence vs. Clause-Set 
Equivalence revisited 
The notion of equivalence between 
Clause-Sets used in Section B 
(Properties: 5,6,10) can be extended 
through mapping functions as follows: 
 

Definition 12: Two Clause-Sets S1, S2 
are said to be equivalent via mapping 
(written S1 ≈m S2) iff S1=S2103 or there 
exists a Mapping# function M and a 
mapping m such that: M(S1,m)=S2 or 
M(S2,m)=S1. 
 

As GSPRA+ uses an algorithm to 
determine whether a node/SRT has been 
already created or not to avoid 
redundancies and minimize nodes (c.f. 
steps: 2-a-iii & iv, 2-b-vi & vii in the 
definition of GSPRA+), this effort can 
be restricted to comparing already 
resolved Clause-Sets with newly 
created ones in each step. Because of 
Property 10 (Algorithmic Equivalence = 
Syntactical Equivalence), this implies 
the necessity of investigating whether 
the above equivalence-via-mapping 
concept disturbs that property or not. It 
could disturb the property only in case 
"Syntactical Equivalence" and 
"equivalence-via-mapping" were not 
one and the same property as formalized 
in the following lemma. 
 

Lemma 8: Assuming S1 ≈m S2, then 
there always exist Clause-Sets S1’ and 
S2’ fulfilling S1 ≈m S2 iff S1’=S2’ 
 

Proof: Per Definition 12 either S1=S2 
and in that case this assertion is trivially 
                                                 
103 Syntactical Equivalence implies the 
existence of a trivial mapping between S1, S2. 
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valid or there exists a Mapping# 
function M and a mapping m such that: 
M(S1,m)=S2 or M(S2,m)=S1. 
Suppose M(S1,m)=S2, i.e., literals of S1 
can be substituted by others in a way 
prescribed by m to yield S2. What 
happens if we apply CRA+ to both, S1 
and S2? 
Since structures of those Clause-Sets 
are the same (else substitution of 
different literal names wouldn’t have 
rendered them syntactically equivalent), 
connection matrices constructed by 
CRA will also be the same getting 
S1’=S2’=CRA+(S1)=CRA+(S2).  
(Q.E.D.) 

Lemma 8 asserts that equivalent Clause-
Sets used under GSPRA+ can have one 
common syntactical form, namely the 
one produced by CRA+. This amounts 
to instructing GSPRA+ to only store 
Clause-Sets in its LCS data structure 
after converting them to a canonical 
form using CRA+ (which we call further 
down: CRA-form).  
Having established that checking 
Syntactical Equivalence of Clause-Sets 
in SRTs produced by GSPRA+ is 
sufficient to identify redundant 
nodes/SRTs, a straightforward 
algorithm will demonstrate how to do 
that: 

 
CompareSets: -   

Inputs: two a.a. 3-SAT-CNF Clause-Sets S1,S2 of sizes <=M  
Outputs: TRUE/FALSE 

 Steps: -  for all clauses C in S1: Set C’=next clause in S2 
   if (CompareClauses(C,C’)=FALSE) return FALSE 

return TRUE 
CompareClauses: -   

Inputs: two a.a. 3-SAT-CNF-clauses C1,C2   
Outputs: TRUE/FALSE 
Steps: -  for all literals lit in C1: Set lit’=next literal in C2 

   if (lit<>lit’) return FALSE 
  return TRUE 
Note that CompareSets has O(M) primitive operations, since CompareClauses is in 
O(c), c constant. 
 
E-3: Splits in MSTs 
Although MSTs produced by GSPRA+ 
are not s.o., a lemma about splits 
(similar to Lemma 3) can be formulated 
after two definitions: 
 

Definition 13: A MST whose Clause-
Sets are all l.o. is called: Sequentially-
Ordered, Multi-spaced SRT (notation: 
MSRTs.o.). A block Bx whose Clause-
Sets or derivations thereof (all or part of 
them) belong to more than one Variable 
Space is called a Multiple Space Block, 
MSB (notation: Bx

S1,S2,..,S1,S2,.. 
Variable Spaces). A node in a space ST 
(called: Target Space, TS) which is 
common between two or more Variable 

Spaces is called Multiple Space 
Common-node, MSCN (written: 
[q]ST

S1,S2,..,S1,S2,..,ST Variable Spaces). 
More formally104: A node is called 
MSCN if in step k of the resolution it 
becomes common child to two or more 
nodes of different spaces ([x]S1, [y]S2, 
[z]S3, … in Fig. 46)105 generated in 
steps <=k. This happens when there 
exist mappings M1,M2,M3…, such that: 
x=M1(x’),y=M2(y’),z=M3(z’),…, where 
x, y, z are literals in ST, and x’, y’, z’ are 

                                                 
104 c.f. with Definition 5, Section A) 
105 The notation [x]S1 is read: Node [x] in 
Variable Space S1. 
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S2 S3 S1 

ST 

X=M1(X’) 

Y=M2(y’) …… 

X’ Y’ Z’ …….. 

Q 

literals replaced by TRUE or FALSE in 
their respective Clause-Sets and 
respective Spaces. The common-node 
[q]ST

S1,S2,.. contains the first appearance 
of its name literal (NL) q in all branches 
of the MSRTs.o containing [x’]S1, [y’]S2, 
[z’]S3, … etc. and there exist literals q’, 
q’’, q’’’, etc. in Spaces S1,S2,S3,… such 
that: q=M1(q’)=M2(q’’)=M3(q’’’)=… 
etc. 
 
 
 
 
 
 
 

Figure 46: Multiple Space Common-Node 
           (MSCN) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 47: Illustration of Definition 13 where 
ST=Space1, [c] ST

Space2={{c,e}} is an MSCN, 
Bc

ST,Space2={{c,d}{c,e}}, M={(d>a), (c>b), 
(e>c)}. [c]ST

Space2 is obviously child to both, 
[b]ST={{b,c,d}{c,e}} and [a]Space2={{a}{b,c}} 
with edge-literals b and a=M(d). 
 

Definition 14: An MSCN is called DS-
MSCNz (Double-Sided MSCN with 
respect to literal z)106 if there exist at 
least two edge- or branch-literals x, y 

                                                 
106 c.f. definitions provided here with 
definitions of DSCNs and SSCNs in Lemma 2.   

from Spaces S1, S2 respectively and a 
literal z from the target space ST such 
that: x=M1(z), y=M2(z), y=¬x. 
Literals x and y are also called 
distinguished (c.f. Lemma 2 and 3). 
If an edge- or branch-literal a from 
Spaces (for which an MSCN is a sink) 
is not distinguished then the MSCN is 
called SS-MSCNa (Single-Sided MSCN 
with respect to a). An MSCN is called 
trivial MSCN, tMSCN, if it is formed 
through a newly resolved clause in step 
k, who belongs to an MSB to which one 
or more of its parents belonged in steps 
<k. 
[c]ST

Space2={{c,e}} in the example above 
of Figure 47 is thus a SS-MSCNb. We 
are now ready for the following 
important lemma which is basically a 
generalization of Lemma 3 of Section 
C: 
 

Lemma 9: For any trees produced 
while resolving an a.a. 3-SAT-CNF 
Clause-Set S the following is valid: 
 

a) MSCNs generated by GSPRA+ in 
step k and containing rank 3 
clauses cannot be split in any step 
>k.  

b) The only splits possible in IRTs 
generated by GSPRA+ for S are 
trivial ones related to size 1 
MSCNs. Their maximum number 
is RCC3-SAT for any MSCN in any 
step. 

c) For SPR-like- or unlike 
resolution-procedures: If all IRTs 
produced during resolution of S 
are free of BigSps then the final 
SRT must be an MSRTs.o. 

 

Proof: We recall the generic form of an 
MSCN [q]ST

sp1,sp2,sp3,.. whose edge- or 
branch-literals can be either 
distinguished or not: 
 
 
 
 

    (....){.., }Sp1 

aST=M1(x) 
¬bST=M3(z) 

    {..,q,…}..Sp3 

{ }ST 

    (....){ }Sp2 

bST=M2(y) 

Figure 48 
:: 
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a- If [q]ST
sp1,sp2,sp3,.. has a rank 3 

clause C’={a’,b’,c’}ST among its 
clauses, then obviously, when 
C’ was added, equivalent images 
Ci of a certain clause C from S 
(the Base-Set) traversed all 
branches leading to the MSCN 
in respective spaces Spi to 
augment [q]ST

sp1,sp2,sp3,.. with 
C’107. All literals of those 
images Ci were >= literals 
occurring to their left in their 
respective Clause-Sets in all 
branches and all spaces, because 
of the l.o. condition. Thus: 
 

C1={M-1
1(a’),M-1

1(b’),M-1
1(c’)}Sp1, 

C2={M-1
2(a’),M-1

2(b’),M-1
2(c’)}Sp2, 

C3={M-1
3(a’),M-1

3(b’),M-1
3(c’)}Sp3, 

etc… 
 

were clauses added to parent 
Clause-Sets of [q]ST

sp1,sp2,sp3,.. in 
all respective branches. On the 
other hand: Any clause 
attempting to split [q]ST

sp1,sp2,sp3,.. 
after it is created through any 
Space Spi must traverse those 
branches again and contain 
literals <M-1

i(a’) in Spi. This 
contradicts the l.o. assumption 
imposed on all Clause-Sets and 
all spaces. 

b- Similar to the argument used in 
the proof of Lemma 3(c): 
Supported- and direct-parent 
MSCNs108 cannot cause a split 
after the size of an MSCN is 
increased anyway, because they 
already started an MSB in their 

                                                 
107 All images Ci traversing branches leading to 
the MSCN need to be equivalent (via mapping) 
otherwise a split would occur. Moreover, they 
need to be images of C (vs. a derivation of it) 
because C‘ is of rank 3. 
108 A formal definition of supported- and 
direct-parent MSCNs is omitted here to avoid 
unnecessary length. Their definition is similar to 
the one given for the single-spaced case (c.f. 
Definition 5, Section A). 

respective spaces different than 
the one they were instantiating 
when the MSCN was created. 
Suppose the size of 
[q]ST

sp1,sp2,sp3,.. is augmented 
through a clause of the same 
MSB, one or more of [q]’s 
parent(s) are instantiating to 
become >1. This obviously 
cannot be done – after the 
MSCN formation - through 
distinguished edge- or branch-
literals or their images, because 
such an attempt would result in 
a split. Suppose the MSCN is 
augmented by the non-
distinguished literal aST and its 
images (which becomes CNAL 
in that case). It means that 
equivalent images of the same 
derivation of a clause of S, say 
C’’, are passed through all 
branches and edges of different 
spaces to the Clause-Set of 
[q]ST

sp1,sp2,sp3,…. This can only 
happen if all other edge- or 
branch-literals of this MSCN 
(and their images in all involved 
spaces representing literals other 
than aST) were not present in C’’ 
and/or its images. Otherwise 
more than one derivation would 
have resulted and would have 
caused a split. An attempt to 
split this MSCN in a further step 
using literals other than aST or 
its images is therefore only 
fruitful if Clause-Sets of the 
form: 

{{b,..}…{<no b>}…{…b…}..}spi 

for arbitrary literals b are 
allowed in an Spi. This is not the 
case since all Clause-Sets in all 
spaces must be l.o. On the other 
hand: Literal aST itself or any of 
its images cannot be used for 
splitting the node because all 
branches in all spaces must have 
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agreed upon its instantiation 
when the node was increased in 
size. This means that an MSCN 
whose size becomes >1 in a step 
cannot be split further in any 
subsequent step. What about 
tMSCNs which relate to 
symmetric and dissymmetric 
MSBs and which may be 
augmented to sizes >1 before 
formation?109 Recall that per 
Lemma 3: L.o.s. conditions 
imposed on SBs and MBs were 
sufficient to avoid the formation 
of similar single spaced tCNs. Is 
this also possible for tMSCNs? 
To see that it is indeed the case, 
it is sufficient to remember that, 
if not scattered, MSBs are 
always represented in one CRA-
form. This means that even 
though they span different 
spaces, a target space can always 
be found in which those blocks 
are expressed. In such a case all 
results of Lemma 3 are 
applicable, i.e. tMSCNs can be 
avoided, because l.o. and l.o.s. 
conditions produce equivalent 
SRTs. If MSBs are scattered : 
Fragments in different spaces 
are, again, represented in CRA-
form allowing all clauses headed 
by an MSB-head-literal to be 
sorted in a way preserving the 
property that l.o.s. and l.o. 
conditions produce the same 
SRTs. The only difference 
between those two conditions 
being related to positions of –ve 
and +ve occurrences of the 
MSB-head-literal, it is irrelevant 
which occurrences come first, 
since only the instantiation of 

                                                 
109 Formal Definitions of symmetric and 
dissymmetric MSBs are not given here to avoid 
unnecessary length. The reader is referred to Lemma 
2 to recall those notions. 

this literal in the whole scattered 
block is producing the tMSCN 
(compare with the proof of 
Lemma 3-c). In Summary: 
When MSCNs are increased to 
sizes >1 they cannot split while 
tMSCNs can be avoided 
altogether whether MSBs are 
scattered or not. This means that 
there are at most only size 1 
splits. 
As seen before in Lemma 3(c), 
the number of possible 
derivations of a new to-be- 
resolved clause in GSPRA+ is 
RCC3-SAT. Therefore, only 
RCC3-SAT splits of any size 1 
MSCN are possible per step in 
the worst case. 

c- If all IRTs produced during 
resolution are free of BigSps: 
This means that neither 
Condition b) nor c) of Definition 
1 were breached in the course of 
resolution in all Clause-Sets of 
all IRTs (their breach causes N- 
and rank 3 CN-splits 
respectively), i.e., all Clause-
Sets in all subsequent IRTs 
(including the final one) were 
l.o.. Hence, the final one is an 
MSRTs.o. as well. Note that this 
assertion is weaker than the one 
made in Lemma 3(d), but 
generic enough to allow a 
broader understanding of 
properties not only of GSPRA+ 
and SPR-like procedures, but 
also of SPR-unlike ones (for 
reasons stated in Section E-5). 

(Q.E.D.) 
 

E-4: Way of Work of GSPRA+ 
As in the case of s.o. SRTs, Lemma 9 
guarantees that using GSPRA+ produces 
only trivial splits which is a significant 
indication concerning its efficiency. It is 
still necessary to understand what 
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GSPRA+ really does when it imposes 
the l.o. condition on clauses. 
 

Definition 15: An MSRTs.o produced 
by GSPRA+ for an arbitrary 3-SAT-
CNF Clause-Set S is said to be aligned 
if ∃C∈S:∀n node not leaf MSRTs.o.,  
∀S’, X where: S’ Clause-Set of n,  
X ∈ S’ the following is true : 

a) SortOrder(C or its derivations 
C’,S’) >SortOrder(X,S’) 

b) S’ is l.o. 
In other words: Either C or one of its 
derivations C’ are the last clauses in any 
Clause-Set of the MSRTs.o. C is called 
alignment-clause.  
 

Definition 16: A node n of size M is 
said to be aligned if: 
 

a) For M<=2: n possesses a 
Clause-Set with an aligned 
MSRTs.o 

b) For M>2: 
(i) All sub-nodes of size M are 

l.o. 
(ii) All sub-nodes of size <M are 

aligned 

The Set of all unique clauses and their 
derivations used for the alignment of all 
nodes of an MSRTs.o of an arbitrary 3-
SAT-CNF Clause-Set S is called 
Alignment Clause-Set of (ACS). 
Obviously, ACS cannot have more than 
RCC3-SAT*M elements/clauses 
containing all possible permutations of 
literals in linear- or non-linear 
sequences. 
 
Lemma 10: All size 1,2 nodes of any 
MSRTs.o of a 3-SAT-CNF Clause-Set S 
produced by GSPRA+ are aligned. 
 

Proof: For size 1 nodes it is clear that 
the MSRTs.o representing any single 
clause is aligned per definition with the 
single clause itself being the alignment-
clause. For size 2 nodes of the form 
S={{a,b,c}{x,y,z}}let's recall that 
GSPRA+ converts any such Clause-Set 
to a l.o. Clause-Set using CRA+ (step 3 
in the GSPRA+ algorithm description). 
This leads to the following cases: 
Case 1 (Fig. 49): No literals are 
common between the two clauses. The 
clause {x,y,z} is then the alignment-
clause (for this type of situation, c.f. for 
example the circled sub-tree {2!,3,4} of 
T3 in Fig. 44). Here one of the general 
forms: 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 Figure 49 

{b11, c11}{x,y,z} 

{a1, b11, c11}{x,y,z} 

{x,y,z} 

{x,y,z} 
{c11}{x,y,z} 

 

a1 ¬a1 

b11 ¬b11 

¬c11 c11 

FALSE 

x 

{x,y,z} 
 

TRUE 
{y,z} 

¬x 

y 
TRUE 

¬y 

{z} 

TRUE 
¬z 

FALSE 
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Case 2 (Fig. 50): There is one literal in common independent of the specific place of 
this literal. Because of the renaming precedence condition of CRA, all Clause-Sets will 
be converted via CRA+ to the form {a,b,c}{a,y,z} which has {a,y,z} as alignment-
clause110: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 50 

                                                 
110 Only clauses with +ve literals are used in the illustration (w.l.o.g.), since -ve signs are irrelevant in the 
current context. 

b 

¬a a 

¬b 

¬c c 

¬y 

¬z z 

{b, c}{y,z} 

{a, b, c}{a,y,z} 

TRUE 
{y,z} {c}{y,z} 

 

{y,z} 
FALSE 

 
y 

TRUE 
{z} 

TRUE 
FALSE 
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Case 3: There is more than one literal in 
common. Because of the renaming 
precedence condition all Clause-Sets 
will be converted via CRA+ to the form 
{{a,b,c}{a,b,d}}. This form has {a,b,d} 
as alignment-clause and has a general 
form similar to the above tree (Fig. 50). 
(Q.E.D.) 
 

Lemma 11: GSPRA+ produces aligned 
MSRTs.os and possesses all properties 
of GSPRA except the linear derivation 
property (Property 3). 
 

Proof: 
1. Aligned MSRTs.os: M=3-sized 

nodes are aligned because their M=2-
sized sub-nodes produced by 
GSPRA+ in a resulting MSRTs.o are 
all aligned (Lemma 10) and (as per 
Definition 16) their M=3-sized sub-
nodes are l.o. The fact that all size 
M=3 sub-nodes are aligned makes in 
the same way all size M=4 nodes 
aligned and so forth. In general: All 
M-sized nodes are aligned because 
all their M-1-sized sub-nodes are 
aligned and their M-sized sub-nodes 
are l.o. This implies that the final 
MSRTs.o is aligned. 

2. Properties (c.f. Section II B): 
a) Property 1 (Completeness, truth 

table equivalence): It is sufficient 
to see that GSPRA+ only renames 
variables/literals in Clause-Sets 
whereby per definition of a truth 
table, this operation doesn’t affect 
any argument related to truth table 
equivalence. 

b) Property 2 (Expansion of 
MSRTs.os): GSPRA+ uses the 
least-literal/clause-rule (c.f. steps 
2 a) and b) in the Align 
Algorithm). This rule is 
applicable within a space as well 
as between spaces in the same 
way described in the proof of this 
property in Section B. Thus: If 
nodes n1 and n2 belong to different 

spaces and were not directly 
connected in step k, they cannot 
be directly connected in steps >k 
because newly resolved clauses 
don’t affect old results of an 
application of the least-literal-rule 
(except for tMSCN cases like the 
one shown in the proof of Section 
B). Also: Nodes of sizes j<=M 
generated in step k are at most as 
many as nodes of sizes j-1 
existent in step k-1 (not counting 
nodes generated through splits in 
level j), since newly resolved 
clauses have to traverse all 
branches of IRTs, if necessary. 
Assuming only unique-nodes are 
permitted, then we have for the 
worst case, i.e., the case where all 
j-sized nodes in step k-1 become 
j+1-sized in step k, the following 
important consequence to be used 
in Lemma 13: 
There are as many newly 
generated nodes at any size-level 
j<=M in step k as there are newly 
generated nodes at size-level j-1 
in step k-1, not counting splits 
produced in k at size-level j111. 

c) Property 4 (Generation of non-
trivial CNs): Has to be slightly 
changed to the following 
property: 
Property 4’ (Generation of non-
trivial CNs/MSCNs in 
GSPRA+): The only non-trivial 
CNs/MSCNs generated in any 
step n by GSPRA+ while 
resolving any clause C of a Set of 
3-SAT-CNF-clauses are identical 
with either C or derivations (not 

                                                 
111 Illustration of the worst case: Suppose we 
have x size-1 nodes in step 0 (and no other sizes 
in the tree), then additional x‘ size-1 nodes are 
generated in step 1, another x‘‘ size-1 in step 2 
etc. This means that size-2 nodes in step 1 will 
be x and become x+x‘ in step 2, x+x‘+x‘‘ in step 
3 etc., not counting splits in size-2 level. 
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necessarily linear) of C which 
are ∈ ACS. 
To see that this property holds 
suppose a non-trivial CN/MSCN 
is generated in step k (either 
between nodes of the same- or 
different spaces) which is neither 
C nor a derivation of it. This 
implies that a "legacy" node 
constructed in steps <k became 
non-trivial CN/MSCN in step k. 
This can only mean that at least 
one new connection has been 
established in step k between two 
nodes which were previously not 
connected. This is only possible in 
the trivial case as per the Linear 
Expansion Property 2. Moreover, 
as renaming actions can alter the 
sequence of literals in any clause, 
this means that derivations of C 
forming CNs/MSCNs could also 
be non-linear. C and all its 
derivations are ∈ ACS. 

d) Property 5 (Uniqueness of 
instantiation results) is a general 
property valid for a.a. Clause-Sets 
and SPR-like algorithms using the 
least-literal-rule and thus valid for 
all l.o. Clause-Sets in MSRTs.os of 
GSPRA+ as well. 

e) Property 6 (Syntactical 
Equivalence): Identical with 
Property 5. 

f) Property 7 (FBDD Equivalence, 
Branch-Linearity): The 
argument in Section B uses the 
least-literal-rule also used by 
GSPRA+ which basically makes 
variables/literals disappear from 
all child-nodes of a Clause-Set 
once they are instantiated 
explaining why a variable/literal 
can appear in a branch only once. 
The difference between GSPRA 
and GSPRA+ in this respect is that 
GSPRA+ changes names of 
variables/literals using CRA+. 

This doesn’t affect this property. 
Part b) is also still valid for 
GSPRA+ 

g) Property 8: Has to be slightly 
changed to the following 
property:  
Property 8’ (Minimal top-part): 
MSRTs.os produced by GSPRA+ 
for a.a. 3-SAT-CNF Clause-Sets S 
of size M have a minimal unique-
node-count in their top-part 
compared to any SPR-like- or 
unlike procedure. 
This property holds per definition 
of GSPRA+ for SPR-like 
procedures (c.f. step 2, 
SelectFirstClause procedure). 
Note that the difference between 
GSPRA and GSPRA+ related to 
the top-part of an SRT/MSRTs.o is 
that GSPRA+ minimizes the 
number of unique-nodes and uses 
CRA+ to convert Clause-Sets to 
l.o. Clause-Sets. GSPRA+ avoids 
redundant <M-sized nodes, since 
it searches LCS for any already 
created similar Clause-Sets/nodes 
and links them to the currently 
processed one if found (c.f. steps 
2-a-iii,iv and 2-b-vi,vii). To see 
why GSPRA+’s unique-node-
count in the top-part of any 
MSRTs.o is minimal for SPR-
unlike procedures as well, recall 
that such a procedure PR must use 
more than one clause for 
instantiation in any top-part of 
generated trees for Clause-Sets of 
size M. All literals of one of those 
clauses have to be instantiated to 
complete such a top-part (per 
definition of Top-parts in Property 
8, Section B). Suppose the best 
count of unique-nodes reachable 
by PR in such a top-part is v. 
Suppose now that instantiating all 
literals of the shortest clause C of 
S generates w unique-nodes, then 
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obviously v>=w, because PR 
could pick a clause which is not 
shortest to fully instantiate. 
Moreover, even if it picks the 
shortest, it must still instantiate at 
least one literal from another 
clause which is an operation 
generating at least one additional 
unique-node of size M and not 
necessarily unique node of size 
<M in such a top-part. As 
GSPRA+, uses the 
SelectFirstClause procedure it 
checks all clauses, including the 
shortest. For the least unique-
node-count, it will produce w or 
less (c.f. Argument in Property 8 
Section B for reference and 
comparison). Here is another 
argument using refutation : 
Suppose PR produces the best 
count, say v, of unique nodes in 
the top-part of a resolution tree. 
This must have been produced 
through instantiation of literals of 
at least two clauses of S : C1, C2, 
one of which, say C2, until it is 
fully instantiated. Let us say that 
the full instantiation of C2 alone 
produces w unique Clause Sets. 
Obviously v>=w, since any 
literals in C1 which are not present 
in C2 must generate at least one 
additional unique node of size M 
and not necessarily unique node 
of size <M. If this is the case, then 
GSPRA+ will definitely choose an 
initial Clause producing <=w 
unique node count, because it 
must check C2 in the course of its 
action, contradicting thus the 
assumption. 

h) Property 9 (generality of 
canonical orderings) is a general 
property valid for a.a. Clause-Sets 
independent of the difference(s) 
between GSPRA and GSPRA+. 

i) Property 10 (Algorithmic 
Equivalence = Syntactical 
Equivalence) is a general 
property valid for a.a. Clause-Sets 
and dependent on the validity of 
Properties 5,6. Lemma 8 
enhanced Syntactical Equivalence 
with the idea of CRA-form as 
seen above. 

(Q.E.D.) 
 

It is about time to find an upper bound 
for the total number of nodes in 
MSRTs.o produced by GSPRA+. The 
following lemma is straightforward: 
 

Lemma 12: MSRTs.os produced by 
GSPRA+ for 3-SAT-CNF Clause-Sets 
of Sizes M=1, M=2 have at most 3*M, 
O(M) non-leaf-nodes. 
 

Proof: As seen in the proof of Lemma 
10 above: MSRTs.os of M=1 have at 
most 3 non-leaf-nodes per definition. 
The alignment procedure for M=2 
Clause-Sets produces 3 more non-leaf-
nodes at most (in the case when there 
are no literals in common between both 
clauses). 
(Q.E.D.) 
 

The following lemma is an important 
assertion related to the upper bound of 
unique-nodes produced by GSPRA+. 
 

Lemma 13: In any step i of GSPRA+ 
resolving an a.a. Base-Clause-Set S of 
size M112 with clause Ci-1: Newly added 
size 1 nodes used to align any sub-trees 
of Clause-Sets S’ of size <M produced 
in steps <i can only be ∈ ACS113. The 
total number of unique-nodes produced 

                                                 
112 When i=1, M=2 with clauses C0, C1 
113 The realization that aligning a clause to an 
MSRTs.o is actually the process of rearranging 
resolution priorities of clauses in all sub-
nodes/Clause-Sets of this MSRTs.o (making the 
base problem equivalent to sub-problems using 
different clauses of the same S for alignment 
with sub-trees) is central for this lemma. 
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by GSPRA+ for S in the final MSRTs.o, 
including those generated by splits, is 
hence bounded above by: 
 

3+ c*RCC3-SAT
2 *M4 + RCC3-SAT *M3, 

c<=3, i.e., O(M4) 
 

Proof: (by induction on M) 
 

Base-Case: M=1: As in Lemma 10: For 
size 1 nodes the MSRTs.o representing a 
single clause which is aligned per 
definition, the single clause itself being 
the alignment-clause. For M=1 we 
have: 

i=0: 3 <3+ 3*(15)2 *(1)4 
 

Illustration Case: M=2: The alignment 
of clause C1 to C0 in step i=1 of the 
resolution adds 3 to the nodes of the 
MSRTs.o of clause C0 which are also 3 
at most (Lemma 12). Thus, for step 
M=2 we have: 
 

i=1: 3+3 <3+ 3*(15)2 *(2)4 
 

The practically used ACS-portion is 
comprised of clause C1 and/or its 
derivations as seen in Lemma 10. 
 
Induction Hypothesis (size M): 
If an IRT with a base-node of size M in 
the form of Fig. 51 is produced by 
adding in each step only elements of the 
ACS to the size 1 nodes levels (while 
aligning clauses to the intermediate 
IRTs of previous steps), the total 
number of unique-nodes, including 
those resulting from splits, not 
exceeding 3+c*RCC3-SAT

2 *M4 + RCC3-

SAT*M3 in this IRT, then: 
 

 
 
 
 
 
 
 
 
 
 

Induction Step (size M+1): 
When IRT is resolved in step i via 
GSPRA+ with a clause Ci-1: 
1. k M-sized nodes shall become k 

M+1-sized nodes and l.o. as well 
(per definition of GSPRA+ and the 
fact that the base Clause-Set is l.o.). 
The breadth k of the first clause C0 in 
S is not altered. No other M+1-sized 
nodes can be formed.  

2. For <M-sized nodes (when they are 
resolved with Ci-1 forming nodes of 
Sizes <= M) the induction hypothesis 
applies, i.e., step i produces for each 
one of them at most |ACS|=RCC3-

SAT*M new nodes of size 1 in their 
respective sub-trees (not counting 
trivial size 1 splits). Suppose that a 
clause C=Ci is aligned to such a node 
n (Fig. 52) needing for the alignment 
of sub-trees of n (not necessarily in 
the same space) some other clauses 
C’, C’’∈ ACS. 
If two or more MSRTs.os of node n 
or any other node are aligned with 
the same clause C, C’ or C’’, then a 
CN/MSCN possessing one unique 
CRA-form (Lemma 8) will be built 
within a space or between different 
spaces for each one of C, C’ or C’’. 
In addition: All such non-trivial 
CNs/MSCNs114 can only represent 
members of ACS as per Property 4’. 
Thus, the total number of newly 
formed unique size 1 nodes for all 
nodes and sub-nodes in this step 
(which may or may not become non-
trivial CNs/MSCNs) cannot exceed 
|ACS| in the worst case, i.e., RCC3-

SAT *M. 
 

                                                 
114 Trivial CNs/MSCNs are not accounted for, 
because they can be avoided w.l.o.g. as per 
Lemma 9. 

Figure 51: IRT with base-node M 
 
:: 
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3. As per 2., the total number of 
generated non-trivial CNs/MSCNs 
cannot exceed RCC3-SAT *M2 in any 
step. Assuming for the worst case 
that each one of those nodes is split 
by the newly resolved clause in step 
i: Lemma 9(b) states that there are 
RCC3-SAT ways to do this for any 
CN/MSCN and that this split is for 
size 1 nodes only, i.e., it produces 
only a constant amount c(=<3) of 
new nodes for each split115. 
This takes the maximum amount of 
newly added size 1 nodes (including 
ACS-elements of point 2) in step i to: 
 

c*RCC3-SAT
2 *M2+ RCC3-SAT *M 

 

What about newly added nodes of 
sizes >1? Lemma 9 assures that there 
are no splits of nodes of sizes>1. 
Moreover, Property 2, the Expansion 
Property of MSRTs.os (Lemma 11) 
asserts that for the worst case, i.e., 
when all size-j-level nodes are 
assumed to become size-j+1-level 
during resolution, the number of new 
size j (<=M) nodes in any step 
cannot exceed the number of new 
size j-1 nodes created in a previous 
step (if splits at level j are not 

                                                 
115 We are assuming hence that each newly 
resolved clause in each step i comes with a 
least-literal equivalent to previously instantiated 
block literals of parent-nodes of every non-
trivial CN/MSCN created before in every space 
and splits this non-trivial CN/MSCN in all 
possible ways without breaching any l.o. 
condition, a clear exaggeration. 

counted as is the case here). This 
indicates for step i that the 
previously created 
 

c*RCC3-SAT
2 *M2 + RCC3-SAT *M 

 

nodes of size 1 (created in step i-1) 
may in the worst case all be 
propagated up the hierarchy of sizes 
to form for each size-j-level of nodes 
 

c*RCC3-SAT
2 *M2 + RCC3-SAT *M 

 

new ones in that level in the worst 
case116. This means that 
 

c*RCC3-SAT
2 *M3 + RCC3-SAT *M2 

 

new nodes are added in step i in all 
levels at most, thus confirming the 
given O(M4) bound.              

(Q.E.D.) 
 
E-5: Minimal MSRTs.os 
In this section we prove that an 
MSRTs.o. produced by GSPRA+ is 
minimal compared to outputs of SPR-
like- or unlike resolution-procedures117 
using canonical orderings and working 
with non-l.o. 3-SAT-CNF Clause-Sets S 
causing BigSps. Property 9 (Generality 
of Canonical Orderings) enables us to 
conclude then that it is also minimal for 
similar procedures which use any 
arbitrary type of orderings. In a further 
step we show that any MSRTs.o. 
produced by GSPRA+ is near-to-optimal 
in terms of the number of nodes. This 
finding prepares for the next section 
                                                 
116 In other words: In any step i, nodes of all 
sizes may be propagated up the size-hierarchy if 
they were not propagated before, but only non-
trivial CN/MSCNs are split at size-level 1. This 
makes the max number of new size-1 nodes 
generated in such a step i : O(M2) at all times as 
seen. Per Lemma 9: No other splits exist in any 
upper level of sizes, therefore, only those O(M2) 
are counted as new additions in every size-level 
of the hierarchy making the total number of 
newly added nodes in all levels in step i: O(M3). 
117 Remember: SPR-unlike procedures require 
the use of more than one clause for instantiation 
in a top-part of a resolution-tree allowing such a 
top-part not to be minimal. 

Space-1 

SRT1 SRT2 SRT3
3 

…….. 

C 

 Node n 
C aligned to n  

C’’ C' C 

C’ C’’ 

Space-N 

Figure 52 
 
:: 
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where FGPRA+ (the parallel counterpart 
of GSPRA+) is shown to be a 
polynomial-time 2-approximation 
algorithm for the problem of finding the 
minimal FBDD solving S (MinFBDD 
Problem). 
 

Lemma 14: Suppose S is a 3-SAT-CNF 
a.a. Clause-Set of size M and PR is any 
SPR-like- or unlike resolution-
procedure producing BigSps using a 
canonical ordering to resolve S, CPR is 
the total number of unique-nodes 
produced by PR for S, CGSPRA+ is the 
total number of unique-nodes produced 
by GSPRA+ for the same S, then the 
rate of expansion of trees118 produced 
by PR in any step (α) is greater than or 
equal to the rate of expansion of trees 
produced by GSPRA+ in the same step 
(β),  
 
i.e., ∀i<=M: 
 

CPR
i=α* CPR

i-1, 
CGSPRA+

i= β* CGSPRA+
i-1 

 

Where α>=β, and hence: 
 

CPR >= CGSPRA+ 119 
 
Proof: (Induction on M, the size of S) 
 

Base-Case M=1: In this trivial case 
both, GSPRA+ and PR produce an 
SRT/MSRTs.o. for the only clause of S 
which per definition have the same 
number of nodes. 
 

                                                 
118 A factor expressing an upper bound of the 
number of new nodes possibly created in any 
step 
119 CPR

i reads: Number of unique-nodes 
produced by PR for Clause-Sets of size i. 
Similarly for CGSPRA+

i. 

Illustration Case M=2: A 
characteristic Set S fulfilling a.a. 
conditions can have a literal a breaching 
Condition c) in Definition 1 in any node 
of its tree (like the one chosen in the 
below example permutations of 
clauses)120. Below are resolution-trees 
containing BigSps produced by PR 
compared to MSRTs.o.s of GSPRA+ for 
the following cases: 

                                                 
120 Monotone 3-SAT-cases are used (w.l.o.g.), 
since negation signs are irrelevant for the 
discussion here. Also: Not all possible 
permutations of literals are demonstrated for the 
described cases to avoid unnecessary length. 
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Case 3 (Fig. 55): S={{b,c,d}{a,c,d}} two literals in common. Alpha=5/3, Beta=4/3, α>β 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 55 

 
BigSps are clearly causing the larger expansion rates. MSRTs.o.s of GSPRA+ are minimal in 
all the above cases. 
 

Figure 54 
 

Case 2 (Fig 54): S={{b,c,d}{a,c,f}}one literal in common. Alpha=3, Beta=5/3, α>β 
 

Case 1 (Fig. 53): S={{b,c,d}{a,e,f}} no literals in common between the two Clause-
Sets. Alpha=3, Beta=2, α>β 
 

Figure 53 
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Induction Hypothesis: For S of Size 
M: CPR

M >= CGSPRA+
M,  ∀i<=M: 

 

- CPR
i=α*CPR

i-1 
- CGSPRA+

i=β*CGSPRA+
i-1 

- α>=β 
 

Induction Step: If S has size M+1, then 
per definition of α and the induction 
hypothesis we know that: 
 

CPR
M+1

 = α* (CPR
M) 

        >=α* (CGSPRA+
M) 

In the same time : 
 

CGSPRA+
M+1= β * (CGSPRA+

M) 
Therefore: 
 

CGSPRA+
M= CGSPRA+

M+1/ β 
 

Substitution yields: 
 

CPR
M+1>= α* (CGSPRA+

M+1/ β), 
 

where α>=β which means that: 
 

CPR
M+1>= CGSPRA+

M+1 
 

(Q.E.D.) 
 

A similar lemma for l.o.u Clause-Sets is 
the following: 
 

Lemma 15: Suppose S is a 3-SAT-CNF 
l.o.u. Clause-Set of size M and PR is 
any SPR-like- or unlike resolution-
procedure producing BigSps using a 
canonical ordering to resolve S, CPR is 
the total number of unique-nodes 
produced by PR for S, where CGSPRA+ is 
the total number of unique-nodes 
produced by GSPRA+ for the same S, 
then the rate of expansion of trees 
produced by PR in any step is greater 
than or equal to the rate of expansion of 
trees produced by GSPRA+ in the same 
step, i.e., ∀i<=M: 

CPR
i=α* CPR

i-1, 
CGSPRA+

i= β* CGSPRA+
i-1 

where α>=β, hence: 
 

CPR
M >= CGSPRA+

M 
 

Proof: (Induction on M, the size of S) 
 

Base-Case M=1: As before: GSPRA+ 
and PR produce an SRT/MSRTs.o. for 
the only clause of S which per 
definition have the same number of 
nodes. 
Illustration Case M=3: A generic Set 
S fulfilling l.o.u. conditions can have a 
clause C2 breaching Condition b) of 
Definition 1 like the one chosen in the 
below example permutations of clauses. 
As there are for M=3 much more 
permutations than can be included here, 
a representative case is chosen. This is 
the case where C0 and C2 have only one 
common literal a causing the breach and 
no other literals in common between 
any two or more clauses121. Fig. 56a 
and 56b illustrate resolution-trees 
produced by PR compared to 
MSRTs.o.of GSPRA+: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
121 The reader is encouraged to use shown trees 
to check other permutations as well (for 
example: g=f=c). 

Figure 56a 
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Figure 56b 
  

 
 
 
 
 
 
 
 
 
 
 
 
Note that for S’={{a,b,c}{d,e,f}} in above upper tree (Fig. 56a) the number of nodes of 
a tree produced by PR is 6 making Alpha = 11/6 while S’’={{a,b,c}{a,d,e}} in the 
above lower tree (Fig. 56b) as per GSPRA+ has 5 nodes making Beta = 8/5, i.e.,  α>β. 
If we set g=c Clause-Sets become {{a,b,c}{d,e,f}{a,c,h}} for PR and {{a,b,c} {a,b,d} 
{e,f,g}} for GSPRA+ (after CRA+ is used) giving us the below two trees (Fig. 57a and 
57b) verifying the claim as well, since Alpha=11/6 and Beta=7/4. Induction Hypothesis 
& Induction Step are both as in Lemma 14. 
 
(Q.E.D.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 57a 
 

Figure 57b 
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Lemma 16: Suppose S is a 3-SAT-CNF 
Clause-Set which is a.a. or l.o.u., then 
the MSRTs.o. produced for S by 
GSPRA+ is both, free of redundancy and 
minimal in the number of unique-nodes 
generated while resolving S compared 
to any other SPR-like or unlike 
resolution-procedure producing BigSps. 
Proof: Let PR be an arbitrary SPR-like- 
or unlike resolution-procedure 
producing BigSps using an arbitrary 
ordering to resolve an S which is either 
a.a. or l.o.u. As per Property 9: If an 
MSRTs.o. produced by GSPRA+ for S 
has a minimal number of unique-nodes 
with respect to all possible canonical 
orderings used by procedures, then it is 
minimal for all non-canonical orderings 
used by those procedures as well. 
Lemma 14, 15 state that the MSRTs.o. 
produced by GSPRA+ for an a.a. or 
l.o.u. S has a number of unique-nodes 
which is minimal compared to any 
SPR-like- or unlike procedure using 
canonical orderings for S and producing 
BigSps. Hence, an MSRTs.o. produced 
by GSPRA+ is minimal with respect to 
the number of nodes produced by PR as 
well. Moreover, GSPRA+ is redundancy 
free because of Property 10 
(Algorithmic Equivalence = Syntactical 
Equivalence) as well as Lemma 8 and 
steps 2-a-iii and 2-b-vi which 
implement both by guaranteeing that no 
new node is created if a node with the 
same Clause-Set (in CRA-form) already 
exists. 
(Q.E.D.) 
 

The above three lemmas of this section 
were concerned with the difference in 
node-counts between resolution-trees 
possessing BigSps and MSRTs.o.s which 
are free of them. The main statement 
of those lemmas being that any 
FBDD-minimizing SPR-like- or 
unlike procedure cannot produce 
BigSps while resolving an a.a. or l.o.u. 
Clause-Set, otherwise GSPRA+ yields 

better results. This means also as per 
Lemma 9(c) that optimal minimization 
procedures must produce MSRTs.os. It is 
still necessary to investigate the 
difference in size between MSRTs.o.s, 
which may have a variety of node-
counts. GSPRA+ allows many strategies 
of selection of the first clause C0 as long 
as they all result in a minimal top-part 
of the final tree. Also: SPR-unlike 
resolution-procedures may generate 
MSRTs.o.s of competitive sizes although 
they don’t guarantee minimal top-parts. 
In what follows we will show that any 
strategy used for generating a minimal 
top-part of the MSRTs.o.s in GSPRA+ 
produces a tree near-to-optimal with 
respect to the number of unique-nodes. 
This is sufficient for the lemmas and 
theorems of the next section. 
 

Lemma 17: Suppose A1 is an SPR-like- 
or unlike algorithm which always 
generates an SRT with minimal number 
of unique-nodes for an a.a. 3-SAT-CNF 
Clause-Set S, say CMin in its resolution-
tree. A2 is an algorithm using GSPRA+, 
then there exists an integer z such that 
the total number of nodes generated by 
A2, say C’, is bounded above by 
CMin*(1+1/z), z>1. 
 

Proof: (Induction on M, the size of S) 
 

Base-Case M=1: Both A1 and A2 
produce the same number of nodes for 
the single clause, which is k122, its 
breadth, k<=3, C’=CMin. 
 

Induction Hypothesis:  
S is an a.a. 3-SAT-CNF Clause-Set of 
size M, T1 is a tree generated by A1 
with Base-Set S1 and unique-node-
count CMin, T2 is a tree generated by A2 
with Base-Set S2 and unique-node-
count C’, where S=S1=S2 via mapping 
and there exists an integer z>1 such 
that: C’=CMin*(1+1/z) 
 

                                                 
122 Excluding TRUE and FALSE nodes. 
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Induction Step: For Clause-Sets S of 
size M+1:  
Suppose T=T2 is resolved in the 
induction step with a clause CM to give 
T’, then there are two cases: 
 

Case 1: CM doesn’t affect the top-part 
of T, i.e., no re-arrangement of clauses 
of the Base-Set S2 is needed and CM is 
just appended to the rear of all Clause-
Sets of size M of the top-part of T to 
form the top-part of T’, then: 
The top-part of T’ is still minimal if 
constructed by A2 per definition of 
GSPRA+. It is thus sufficient to 
investigate what happens in the bottom 
part. There are two possibilities 
depending on which algorithm is used: 
 

CMin
b=[a+b+c]-1/x*[a+b+c]=[a+b+c]*(1-1/x) 

 

(1) 
where CMin

b is the total number of 
unique nodes generated in the bottom 
part, a,b,c are the total number of nodes 
generated by A1 for each respective 
TBN of T when it is resolved with CM 
(there are always maximum three of 
those TBNs), 1/x is the portion of nodes 
counted more than once (CMin

b should 
be redundancy free).  
 

Or: 
 

Cb= [a’+b’+c’]-1/y * [a’+b’+c’] 
(2) 

 

where a’,b’,c’ and y have similar 
meanings for A2. Obviously if we 
choose z = Max(x,y) we have per 
minimalism of A1: 
 

CMin
b<=Cb<=[a’+b’+c’](1-1/z) 

(3) 
 

Using induction hypothesis: There 
exists z’>1 such that: 
 

Cb<=[a’+b’+c’](1-1/z)=(1+1/z’)[a+b+c](1-1/z) 
 

(4) 
 

where (1/z’)[a+b+c] are surplus-nodes 
generated by A2123, then: 
 

Cb<=(1+1/z’)[a+b+c](1-1/z) 
    <=[a+b+c](1-1/z+1/z’-1/(z*z’)) 
    <=[a+b+c] (1+1/z’) 
 

substituting for [a+b+c] using (1) 
   
   <=CMin

b * x/(x-1) * (1+1/z’)  
  <= CMin

b * [x/(x-1) + x/((x-1)*z’)] 
   <= CMin

b * [xz’+x/(xz’-z’)] 
   <= CMin

b * [(1+1/z’)/(1-1/x)] 
 
we want thus to select a z’’ such that: 
 

(1+1/z’)/(1-1/x)=1+1/z’’ 
1+1/z’ =(1+1/z’’)*(1-1/x) 
 = 1-1/x+1/z’’-1/(x*z’’) 
         <= 1+1/z’’ 
 

i.e., 1/z’<=1/z’’ and z’>=z’’ 
 

It is therefore sufficient to choose z’’=z’ 
to see that  
 

Cb <= CMin
b * (1+1/z’) 

(5) 
 

i.e., that there exists an integer z’>1 
which, if assumed to count the surplus 
portion of nodes generated by A2 in step 
i, is also counting the surplus-nodes 
generated by the same algorithm in step 
i+1. 
 

Case 2: CM does affect the top-part of 
T, i.e., re-arrangement of clauses of the 
Base-Set S2 is needed, then GSPRA+ 
will convert S2 to an l.o Clause-Set 
S2’=S2 of size M+1 (using CRA+) 
whose last clause is CM’ and reconstruct 
the tree for the first M clauses (as per 
step 2-b.v. of GSPRA+’s definition). Set 
T equal to this newly constructed tree, 
then resolve CM’ with T. The rest of the 
argument is similar to Case 1 since CM’ 
will not affect the top-part of T per 
definition of l.o. Clause-Sets. 
(Q.E.D.) 

                                                 
123 Recall that A1 and A2 are both applied on 
the same TBNs of T. 
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F)  FGPRA+ FOR ARBITRARY, 
3-SAT-CNF CLAUSE-SETS 
 

GSPRA+ is a constructive algorithm 
which served well to give us an upper 
bound for the number of nodes resulting 
from pattern-oriented resolution-
methods, but it is hardly practical, 
because of the fact that it needs to 

rebuild trees of nodes again and again in 
each sequential step if they are found to 
be not l.o. (c.f. step 2.b.iv in the above 
description of Align). To overcome this 
drawback, the following algorithm 
(called: FGPRA+) works directly with 
the whole Set of 3-SAT-CNF-clauses 
and resolves them in parallel. 

 
 
 
Prerequisites:  
− convert arbitrary clauses in S to a.a. ones (sorting literals inside each clause) 
− convert S to a l.o. Set S’ using CRA+ 
− make sure to sort S so that a clause which produces the least top-part is 

selected first. Use for this SelectFirstClause procedure which was used for 
GSPRA+ 

− create a base-node having S’ as Clause-Set and pass it to FGPRA+ 
Inputs: base-node   
Outputs: an MSRTs.o 
Data Structures used: list of Tuples: < Clause-Sets, Node index> (called: 

LCS, initially empty)  
Steps: 
For current node n, Clause-Set S’: 
if size of n > 1 

1. use least-literal/clause-rule to instantiate all clauses in S’ accordingly 
a. form leftInstantiatedClauseSetOfS’ and use CRA+ to make it l.o. if it is not 
b. form rightInstantiatedClauseSetOfS’and use CRA+ to make it l.o. if it is not 
c. make sure to sort both right- and left Clause-Sets of S’ so that the clause 

which produces the least top-part is selected first. Use for this 
SelectFirstClause procedure which was used for GSPRA+ 

2. search for leftInstantiatedClauseSetOfS’ in LCS 
a. if found: Set leftNodeIndex of n = node index found  
b. if not found:  

i. create a new node for leftInstantiatedClauseSetOfS’ 
ii. give it an index I and Store the tuple <leftInstantiatedClauseSetOfS’, I > 

in LCS 
iii. set leftNodeIndex of n = I 

3. search for rightInstantiatedClauseSetOfS’ in LCS 
a. if found: Set rightNodeIndex of n = node index found  
b. if not found:  

i. create a new node for rightInstantiatedClauseSetOfS’ 
ii. give it an index J and store the tuple <rightInstantiatedClauseSetOfS’, J 

> in LCS 
iii. set rightNodeIndex of n =J 

4. set current node = leftNodeIndex of n  

FGPRA+:  
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5. call yourself recursively with FGPRA+(current node) if leftNode was newly 
formed and not TRUE or FALSE 

6. set current node = rightNodeIndex of n  
7. call yourself recursively with FGPRA+(current node) if rightNode was newly 

formed and not TRUE or FALSE 
8. return MSRTs.o 

 

If size of n =1 
! create MSRTs.o for this single clause as described in 

Definition 2 step 1 if it is not already done 
! return MSRTs.o. 

Now we need to show the equivalence 
between FGPRA+ and GSPRA+, i.e., 
that the same MSRTs.o is produced in 
both cases. 
 

Lemma 18: For any arbitrary 3-SAT-
CNF Clause-Set S: FGPRA+ (S) 
=GSPRA+ (S). 
 

Proof: (induction on M, the size of S) 
Remembering that both algorithms use 
CRA+ in their preparation phases on the 
same S. 
 

Base-Case: M=1: They convert C0 ∈ S 
into the same MSRTs.o as prescribed in 
Definition 2. Thus, FGPRA+ (S) 
=GSPRA+ (S). 
 

Induction Hypothesis: 
For all 3-SAT-CNF Clause-Sets S of 
size M: FGPRA+ (S) =GSPRA+ (S). 
 

Induction Step: If S is of size M+1, 
then it is sufficient to show that top-
parts of both MSRTs.os constructed by 
GSPRA+ and FGPRA+ are equivalent, 
then use the induction hypothesis for 
the remainder. First note that Property 5 
(Uniqueness of Instantiation Results) is 
valid for FGPRA+ as it is for GSPRA+ 
because they both are SPR-like and use 
the same least-literal/head-clause-
instantiation rule. This property states 
that if S is a.a.124 (S1, S2 = any children 
of S produced through instantiations of 
literals i,j, respectively), then S1=S2 iff 
                                                 
124 i.e., also valid for l.o. Clause-Sets. 

i=j. As both algorithms instantiate the 
same C0 using the same rule, all literals 
chosen for instantiation in the top-parts 
of both final MSRTs.os must be equal, 
thus Clause-Sets resulting from those 
instantiations (to be resolved further in 
the TBN bottom-parts) must per 
Property 5 also be equal. We use the 
induction hypothesis for all TBN M-
sized nodes and conclude that 
FGPRA+(S) =GSPRA+ (S). 
(Q.E.D.) 
 
The following main lemma of this 
paper paves the way to a new Solver 
algorithm and Theorem 1. 
 

Lemma 19: For the following 
Assistance Operations125 used by 
FGPRA+ on 3-SAT-CNF Clause-Set S 
of size M: Node creation, MSRTs.o 
creation for a single clause, CRA+, 
Selecting a FirstClause, Forming new 
Clause-Sets using least-literal-rule 
(instantiation), Storing (nodes), 
Searching Clause-Sets in LCS: The 
total, worst case number of Primitive 
Operations126 performed by any single 
one of them during a run of FGPRA+ is: 
O(M9) which therefore also represents 
the complexity of FGPRA+. 
 

                                                 
125 By Assistance Operations we mean modules 
and/or sub-functions used in the pseudo-code of 
FGPRA+. 
126 Primitive Operations take a constant amount 
of time in the RAM computing model. 
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Proof: Because of Lemma 13 and 18 
we know that the total number of 
unique-nodes in the final MSRTs.o 
produced by FGPRA+ cannot exceed 
 

3+ c*RCC3-SAT
2 *M4 + RCC3-SAT *M3. 

 

The following are then upper bounds of 
the total number of invocations of 
Primitive Operations for all Assistance 
Operations listed above: 
 

1. 3+ c*RCC3-SAT
2 *M4 + RCC3-SAT 

*M3 times CRA+ (each node needs 
renaming in the worst case). 
Through Lemma 6 it is known that 
CRA+ takes O(M2(logM+N)). This 
makes the total worst case number of 
Primitive Operations of this 
category: O(M6(logM+N). 

2. 2*(3+ c*RCC3-SAT
2 *M4 + RCC3-SAT 

*M3) times instantiation (two new 
Clause-Sets are formed for each node 
in the worst case). Instantiating a 
Clause-Set by substituting values 
TRUE or FALSE for a certain literal 
in all M clauses is an operation in 
O(M). This makes the total number 
of Primitive Operations for 
instantiation: O(M5). 

3. 3+ c*RCC3-SAT
2 *M4 + RCC3-SAT 

*M3 times selecting the first clause to 
minimize top-parts using a procedure 
which tries all permutations of 
literals in a clause (RCC3-SAT in 
number) for each clause, i.e., O(M) 
taking the total number of Primitive 
Operations to O(M5). 

4. 3+ c*RCC3-SAT
2 *M4 + RCC3-SAT 

*M3 times node creation assuming 
that it is in O(c), i.e., O(M4). 

5. 3+ c*RCC3-SAT
2 *M4 + RCC3-SAT 

*M3 times Storing/Appending in/to 
LCS assuming that it is in O(c), i.e., 
O(M4). 

6. MSRTs.o creation for a single clause: 
O(c), since independent of M any 
clause can have at most 3 literals 
where 3 nodes are created for each 
one of them. 

7. 3+ c*RCC3-SAT
2 *M4 + RCC3-SAT 

*M3 times Searching Tuples in LCS. 
This search operation can be 
accomplished in the least efficient 
way127 by comparing the sought 
Clause-Set with all Clause-Sets 
stored in the LCS using the 
CompareSets algorithm of Section E-
2 which is O(M). In the worst case 
there are 3+ c*RCC3-SAT

2 *M4 + 
RCC3-SAT *M3 Clause-Sets in LCS, 
i.e., O(M8) comparisons are needed. 
This makes the total number of 
Primitive Operations for Searching 
O(M9). 

(Q.E.D.)

                                                 
127 The least efficient way is chosen to avoid 
any assumptions regarding sort- and search 
orders of Clause-Sets in LCS. 
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The following algorithm (hereafter referred to as: Solver) uses FGPRA+ to produce the 
answers TRUE or FALSE for any Set of arbitrary 3-SAT-CNF-clauses. 
 

Solver: 
Prerequisites:  

- set MSRTs.o = FGPRA+(S) 
- set current node = base-node of MSRTs.o 
- call Solver with the current node 

 Inputs: node of an MSRTs.o  
Outputs: TRUE or FALSE 

Steps  for current node N in MSRTs.o: 
- if N is leaf  

o if -ve then  
! Return FALSE  

o if +ve then  
! Stop giving TRUE 

- if N not leaf 
o set current node = leftnode of N in MSRTs.o 
o call yourself recursively: Solver(current node) 
o set current node = rightnode of N in MSRTs.o 
o call yourself recursively: Solver(current node) 

Step 4: stop giving FALSE 
 

Theorem 1: For any Set of arbitrary 
3-SAT-CNF-clauses of size M Solver 
takes a polynomial number of steps 
bounded by O(M9). Moreover: P=NP. 
 

Proof: In the preparation phase, Solver 
has to use FGPRA+ and (in the worst 
case) has then to traverse all nodes of 
the final MSRTs.o produced by it (which 
is an operation in O(M4)). The result 
follows immediately from Lemma 19. 
Since 3-SAT is a NP-complete problem, 
P=NP. 
(Q.E.D.) 
 

Thus, the formulated objective in 
Section I has been attained. 
 

In the last part of this section we show 
that FGPRA+ is a polynomial 2-
Approximation algorithm for the 
MinFBDD problem128. We conclude by 

                                                 
128 In [Seshia et al. 2000] the problem of 
minimizing level i of a FBDD where the 

affirming for any Boolean function the 
existence of minimal FBDDs, which are 
polynomial in M, the number of clauses.  
 
Definition 17 (Approximation 
Algorithms): 
Let X be a minimization problem. Let ε 
>0, and set ρ = 1+ε. An algorithm A is 
called a ρ-approximation algorithm for 
problem X, if for all instances I of X it 

                                                                  
number of nodes is less than 2i-1 is shown to be 
not approximable to within a factor of 2log^(ε-1) n 
for any ε>0, unless the class NP is contained in 
RQP (the class of all problems solvable in 
random quasi-polynomial time). This is the 
closest -ve result related to minimizing FBDDs 
known to us. A 2-approximation algorithm like 
the one shown here is not conclusive enough to 
deduce the inclusion NP ⊆ RQP using this result 
because it might still be the case that whatever 
is lost in terms of minimization at level i is 
compensated in other levels of the FBDD to 
produce an overall 2-approximation. 



Abdelwahab, N. 
	

	

185	

185	

delivers a feasible solution with an 
objective value A(I) such that: 

|A(I) - Opt(I)| ≤ ε * Opt(I) 
 

In this case, the value ρ is called the 
performance guarantee or the worst-
case ratio of the approximation 
algorithm A. 
 

Theorem 2: Let f be a Boolean function 
of N variables described by an a.a. 
3-SAT-CNF Clause-Set S of size M. 
MinFBDD is the problem of computing 
a FBDD for f which has minimal size. 
Then: 
 

1- FGPRA+ is a 2-Approximation 
Algorithm for MinFBDD. 

2- f has a minimal FBDD with 
polynomial number of nodes in M. 
 

Proof: 
First Claim: Suppose f has some 
minimal FBDD1, then per Property 7(b) 
there is a procedure PR (SPR-like- or 
unlike) which uses variable orderings to 
generate FBDD1. On the other hand, 
FGPRA+ is per Lemma 19 a polynomial 
time algorithm and produces per 
Lemma 17 for S a FBDD2 which has 
C <=CMin*(1+1/z) number of nodes for 
some z>1, where CMin is the optimal 
node-count produced by PR in FBDD1. 
In general we can say that for any 
instance I of MinFBDD (representing 
any function f expressible in a.a. 3-
SAT-CNF form): 
 

|FGPRA+(I) − Opt(I)| ≤ ε * Opt(I), 
Opt(I)=CMin, ε=1/z, z>1, making 

ρ=1+1/z<=2. 
 

Therefore, FGPRA+ is a polynomial 
time 2-approximation algorithm for 
MinFBDD. 
 

Second claim: Since C is in O(M4) per 
Lemma 13 and CMin<=C we know that 
both FBDD1 and FBDD2 must have a 
polynomial count of unique nodes. As 
for the time being we don’t have a clue 
on how PR is calculating its optimal 

FBDD1, we cannot conclude through 
this direction that the MinFBDD 
problem has an exact solution produced 
by a polynomial algorithm129.  
(Q.E.D.) 
 

The conjecture formulated in Section 
I is therefore proven. 
 
III) Application: Solving Blocking 
Sets Problems of Projective Plains 
using FGPRA+ 
As early as [Bryant 1986] it is known 
that practically important Boolean 
functions such as Integer Multiplication 
which are in P can also possess 
exponentially sized OBDDs and 
FBDDs. 
Since FGPRA+ produces FBDDs and in 
light of our new results, we are also 
concerned with discussing exponential 
lower bounds related to FBDDs (c.f. 
[Ponzio 1998] for example). 
The way of work of FGPRA+ imposes 
yet another consideration, namely CNF-
compactness, i.e.: In case an input-
function to be resolved is already 
expressed in exponentially many 
clauses M (with respect to the number 
of input variables N), FGPRA+ can only 
produce, relative to N, exponentially big 
FBDDs130. For example : Known CNF-
representations of Integer Multiplication 
are exponentially long (including those 
assumed in Bryant’s proof). This leaves 
such a function out of discussion here. 

                                                 
129 Although Theorem 1 is essentially an 
indication that PR can be efficient. 
130 It is important to remember that the 
complexity of an algorithm in P is bounded by a 
polynomial function in the size of the input 
(here represented by M, the number of clauses), 
i.e., if any given input is already exponentially 
big with respect to certain reference variables, 
this doesn’t affect the asymptotic behavior of 
the algorithm which will still produce a 
polynomial function of that exponential size.  
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There has been some work comparing 
BDDs to CNF-representations. 
However, they aren’t really comparable 
in that there are functions with small 
BDDs but exponential CNF-
representations (e.g., the odd parity 
function, XOR) and vice-versa (c.f. 
[Devadas 1993]).  
The latter type of functions represents a 
challenge to the ideas presented in this 
paper. As per Lemma 13 and Theorems 
1,2 it should be always the case that any 
compact CNF-representation of a 
Boolean function yields polynomial-
sized FBDDs. For Devadas' function, 
the exponential-size result has been 
proven for OBDDs and there is indeed a 
polynomial-sized FBDD solving that 
function. Are there problems for which 
a compact CNF-representation has a 
proven exponential lower bound for 
FBDDs? 
 

Yes. 
 

In [Gal 1996], the function defined by 
blocking sets of a finite projective plane 
 

Definition 18: Let ∏ = (P, L) be a 
projective plane of order q. (P is the 
set of points and L is the set of lines, 
viewed as subsets of P). Let 
n=q2+q+l and m=q+l. So Abs(P) = 
Abs(L) = n, each line has m points, 
and each point is incident with m 
lines. 

 

is shown to have FBDDs of size 
2^Ω(√n). This result practically says 
that FBDDs constructed for blocking 
Sets of PPs have their first q levels 
equivalent to a complete binary tree. 
How does FGPRA+ perform in the 
blocking-sets-of-finite-projective-planes 
case? Appendix A and B show runs of 
FGPRA+ for planes of order q=2 (Fano) 
and q=3 respectively (only first part of 
the final FBDD is presented), whose 
original problems are expressed in 
3-SAT, 4-SAT Clause-Sets as follows: 

 

PG2(2)  
0 1 2 
0 3 4 
0 5 6 
1 3 5 
2 4 5 
2 3 6 
 

PG2(3) 
0 1 2 3 
0 4 5 6 
0 8 9 12 
0 7 10 11 
1 4 7 8 
1 6 9 11 
1 5 10 12 
3 4 9 10 
2 4 11 12 
2 5 7 9 
3 6 7 12 
3 5 8 11 
2 6 8 10 

 

Note the following observations: 
In the k-SAT-representation of this 
problem N (number of variables/literals) 
and M (number of clauses) represent 
number of points and lines (denoted in 
Definition 18 as P and L), M=N=n. The 
breadth of clauses k=m is the number of 
points per line as well as intersecting 
lines per point. 
FGPRA+ utilizes a 3-SAT representation 
of k-SAT clauses and uses CRA+ to 
produce l.o. Base-Sets (c.f. Appendix 
B) before resolving. 
For all projective planes with q>=3 the 
FBDDs generated by FGPRA+ do not 
show a complete binary tree in the first 
q levels (c.f. circled parts of the trees in 
appendix B). This is mainly caused by 
Property 8’ of FGPRA+. In addition to 
that: Practical implementations of 
FGPRA+ realized for q=3, M=51 
clauses show a total number of nodes of 
176,839 with polynomial growth 
(O(M4) as predicted)131 illustrated in 
following Fig. 58: 

                                                 
131 There are of course more efficient, not 
necessarily equisatisfiable ways of translating 
4SAT Clause Sets into 3Sat ones. For example 
the transformation : {x1,x2,x3,x4}  => 
{x1,x2,z1}{¬z1,x3,x4} yields only 26 Clauses and 
2832 nodes for q=3 



Abdelwahab, N. 
	

	

187	

187	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 58: The x-axis represents the number of 
clauses where the y-axis represents the number 
of nodes generated in the FBDD. 
 

The final theorems of this paper use the 
following practical definition of 
compact CNF-representations. 
 

Definition 19:  A Boolean function f(N) 
(for N = input variables) is said to 
possess a k-SAT-CNF-compact-form if 
the number of clauses M expressing f in 
k-CNF is polynomial in N. 
 

Theorem 3: The function defined by 
blocking sets of a finite projective plane 
(Definition 18) possesses a FBDD of 
polynomial size. The number of nodes 
of this FBDD is in O((q+1)4M4) with 
M= number of points/lines, q order of 
the plane. 
 

Proof: Note first that the proof of the 
exponential lower bound given in [Gal 
1996] only holds under the assumption 
that clauses represent complete lines: 

"Proof of the theorem. We show 
that for every q-element subset A of 
the variables, N(f∏, A) = 2q holds, 
i.e., each truth assignment to the 
variables in A yields a different sub-
function on the remaining variables. 
Since each line defines a clause 

 of the function f∏, it follows 
from the Fact[132] that for an arbitrary 
q-element subset A of the variables 
there exist q clauses such that each 
variable from A appears in exactly 
one of them, and each variable 
appears in a different clause."133 

 

When FGPRA+ converts the k-SAT 
description to 3-SAT, this problem 
structure dissolves and original 
lines/clauses are split into smaller ones 
not fulfilling the condition that "each 
line defines a clause of the function" 
described in the citation and crucial for 
establishing the lower bound result. 
Moreover, converting clauses to 3-SAT 
in an equisatisfiable way produces for 
each original line/clause m=q+1 
additional "portions" at most (connected 
using newly introduced 
variables/literals) thus making the total 
amount of clauses given to FGPRA+ 
(q+1)*M. Eventually, this fact along 
with Lemma 13 explain O((q+1)4M4) as 
the worst case for the number of nodes 
in the FBDD constructed for this 
problem by FGPRA+. 
(Q.E.D) 
 

                                                 
132 Fact is a combinatorial property of 
projective planes. 
133 [Gal 1996] p.15 
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It is highly probable that other 
exponential lower bounds for functions 
possessing a compact CNF which use 
the following common observation for 
Boolean functions in their proofs have 
to be revised in the light of our results 
in a way similar to Theorem 3, i.e., 
taking into consideration that the 3-SAT 
formulation may destroy the assumed 
clause-structure of f in the given 
problem: 
 

"Lemma: Let f be a Boolean function 
of n variables. Assume that m is an 
integer, 1 < m < n, if for m any m-
element subset Y of the variables 
N(f, Y) = 2m holds134, then the size of 
any read-once branching program 
computing f is at least 2m -1."135 

 

                                                 
134 N(f,Y) denoting the number of different 
sub-functions obtained under all possible 
assignments to Y. 
135 c.f. proof of this lemma in [Gal 1996] 

Independent of that we can establish: 
 

Theorem 4: Suppose a Boolean 
function f possesses a compact CNF-
form, then it possesses FBDDs of 
polynomial size in N as well as M (for 
N = number of variables and M = 
number of clauses). 
 

Proof: Follows immediately from 
Definition 19, Lemma 13 as well as 
from Theorem 2. 
(Q.E.D) 
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VI) RESULTS AND DISCUSSION 
Efforts to solve the NP-Problem have 
been going on for decades. In the here 
presented work, the inability to solve it 
for so much time has been taking on 
heuristically by considering the 
contemporary computer scientific- and 
mathematical paradigm as 
inappropriate.136 
 

A new paradigm is required. 
 

In the context of the 3-SAT-problem, 
we have introduced a constructive view 
which identifies a variable with an 
intrinsic logical truth pattern holding 
information about its semantics and 
interacting with similar ones to facilitate 
calculating the desired overall truth 
value of a formula in an efficient way. 
We have shown that this new perception 
divides 3-SAT-CNF-formulas into three 
main types: 
 

1. almost arbitrary (a.a.) 
2. linearly ordered but unsorted (l.o.u.)  
3. linearly ordered (l.o.). 
 

New pattern-oriented algorithms (AP), 
which are shown to be efficient, make 
use of this distinction and of the 
canonical ordering(s) induced by 
renaming operations in respective sub-
problems. In addition, FBDDs 
constructed by AP are near-to-minimal 
with respect to all other possible 
variable orderings. The first result 
answers the P=NP question positively 
while the second answers the open 
question whether there are constant 
approximation algorithms for the 
MinFBDD problem positive as well. 
Finally, the positive answer of this 
second problem entails a practical result 
showing that it is always possible for 
compactly expressed Boolean functions  
 
 
                                                 
136 c.f. [Daghbouche 2012 (1)] 

 
 

to construct near-to-minimal FBDDs 
with polynomial number of nodes. 
As per the introduction, the work 
presented in this paper is inspired by 
ideas originating from ancient Muslim 
scientists who effectively built their 
theoretical and practical insights to 
serve humanity. 
 

They must have truly believed in the 
epistemological statement: 
 

"[…] of knowledge it is only a little that 
is communicated to you […]" 137 
 

It motivated ancient Muslim scientists 
to keep looking for practical solutions 
even for seemingly hard problems. 
Ultimately, human knowledge is not a 
reflection of ontological reality, but a 
matter of subjective perception.138 

                                                 
137 Quran: Al-Israa, 85 
138 c.f. [Daghbouche 2012 (2)] 
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APPENDIX 
 
 
A) Fano Plane, PG2(2),S={0,1,2}{0,3,4}{0,5,6}{1,3,5}{1,4,6}{2,3,6}{2,4,5},S is l.o. 
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B) PG2(3) 
 
 
After conversion to 3-SAT: N=63 variables, M=51 clauses: 
S={{0,1,2!}{0,3,4!}{0,5,6!}{0,7,8!}{1,3,9!}{1,10,11!}{1,12,13!}{2,14,15!}{3,16,17!} 
{3,18,19!}{4,20,21!}{5,7,22!}{5,23,24!}{5,25,26!}{6,27,28!}{7,29,30!}{7,31,32!}{8,
33,34!} 
{9,22,35!}{10,12,20!}{10,16,36!}{10,18,37!}{11,38,39!}{12,16,40!}{12,18,41!}{13,4
2,43!} 
{14!,16,18}{15,21,44!}{17,45,46!}{19,47,48!}{23,25,33!}{23,29,47!}{23,31,38!}{24,
40,49!} 
{25,29,42!}{25,31,45!}{26,37,50!}{27!,29,31}{28,34,51!}{30,36,52!}{32,41,53!}{35,
43,54!} 
{39,48,55!}{44,51,56!}{46,52,57!}{49,58,59!}{50,53,60!}{54,44,61!}{56,61,62!}{57,
58!,60} 
{59,62}}. S is l.o. 
The conversion is done in the following way. The Clause  
(A[1] or A[2] or A[3] or A[4] or A[5] or A[6] or A[7]) 
yields the following set of clauses. 
(A[1] or A[2] or ~X[1]) 
(A[3] or A[4] or ~X[2]) 
(A[5] or A[6] or ~X[3]) 
(X[1] or X[2] or X[3] or A[7]) 
The last clause is not 3-sat so the algorithm is re-run on this last clause, yielding the 
following new clauses: 
(X[1] or X[2] or ~Y[1]) 
(X[3] or A[7] or ~Y[2]) 
(Y[1] or Y[2]) 
 
(developed for illustration stepwise from M=4 to until M=8 only) 
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