
Abdelwahab, N.
	

	

99	

99	

Journal Academica Vol. 6(2), pp. 99-199, July 1 2016 - Theoretical Computer Science - ISSN 2161-3338
online edition www.journalacademica.org - Copyright © 2016 Journal Academica Foundation - All rights reserved

Full Length Research Paper

Constructive Patterns of Logical Truth

Elnaserledinellah Mahmood Abdelwahab*
Senior Project Manager, makmad.org e.V., Hanover (Germany)

[v2] Received June 22, 2016 based on [v1] Published February 15, 2016; Accepted June 30 2016

ABSTRACT
The simplified linguistic relation between syntax and semantics as intrinsic property of
classic Arabic motivates a dedicated look at P vs. NP in light of efforts and solutions
presented by ancient Arab- and Muslim scholars to facilitate logical- and mathematical
deduction. In Islamic Jurisprudence (Fikh) it has recently been shown [Abdelwahab et
al. 2014] that if a formal system expressing Fikh is chosen in such a way that it is both,
logically complete and decidable, the question of a complete and consistent legislation
is decidable. If this formal Fikh-system is additionally chosen to be at least as
expressive as propositional logic, the deduction of detailed sentences is efficient while
the deduction of general rules is NP-complete. Further investigation reveals that ancient
scholars adopted a very efficient approach for checking the validity of assertions with
regard to both, language and logical argument which was mainly characterized by the
extensive use of syntactical patterns already existent in input-variables. Accordingly,
the structure of input-variables in 3-SAT-problems is investigated. The discovered
variable-structure divides 3-SAT-formulas into three interrelated types of which one
enables efficient pattern-oriented procedures. A novel 3-SAT-solver technique is
introduced which binds the resolution of 3-SAT-formulas to the construction of FBDDs
using the newly proposed pattern procedures. Finally, both 3-SAT and the question of
finding 2-approximation algorithms for MinFBDD (the problem of minimizing FBDDs)
are addressed. Positive results are reported for both questions. A practically important
consequence is the ability to construct near to minimal FBDDs with a polynomial
number of nodes for all Boolean functions expressed in a compact way. Eventually, an
application of this new 3-SAT-solver is shown to enable polynomial upper bounds of
the number of nodes in FBDDs constructed for finite projective planes problems
overhauling the currently known exponential lower bounds.

Keywords: algorithm, Khwarizmi, Al-Ghazali, Islam, algebra, Islamic law, Islamic
jurisprudence, Fiqh, logic, syntax, semantics, complexity, decidability, SAT, NP

INTRODUCTION

How fast can two numbers be
multiplied?
The answer to this question is different
from the rather classical question: How
fast can two numbers be multiplied in a
universal way? While the latter

currently is O(nlog n 2O(log*n)) for n-digit
numbers via Fürer's algorithm, where
log*n represents what is called the
iterated logarithm operation, the former
depends on the structure numbers can
reveal. If, e.g., the two factors belong to

*Corresponding author: elnaser@makmad.org

Abdelwahab, N.
	

	

100	

100	

the Set {10i | i>0}, an optimal algorithm
would simply append all zeros of one of
them to those of the other performing
this operation in just O(n). Such an
algorithm expects clues in its input-
variables - depending only on the
syntactical form of the input - to yield
an efficient solution1.
In what follows we shall call this type
of algorithms pattern-oriented (AP). In
contrast, a universal algorithm (AU)
shall be a procedure where input-
variables are not assumed to possess
any structural information serving to
reduce complexity2.

Can AP substitute AU?

The above example of multiplication
doesn’t seem to make the case since
arbitrary numbers are not necessarily of
a form similar to {10i | i>0}.
Since algorithms are not necessarily
about numbers, let us take a look at
those used in other domains such as
Natural Language Processing (NLP)
determining the meaning of an English
word. A simple AU searches in a pre-
arranged lexicon which stores meanings
for all admissible syntactical forms as
well as other useful information. For
such an AU, "admissible" simply means
existent in a pre-defined list. Consider
on the other hand the problem of
determining the meaning of a word in
the classical Arabic language. We could
apply the former AU to solve this
problem. We could also write an AP
which makes use of an intrinsic
property of Arabic, namely that the
morphology of words is based on
"roots" which represent semantic
categories. In Arabic, e.g., the root of
"write" has the form k-t-b where terms

1 An efficient solution always implies a
complexity within P.
2 There are many other aspects of universality
which may serve as a basis for different
definitions of universal algorithm.

are completed by supplemental vowels
and additional consonants, e.g., kitāb
"book", kutub "books", kātib "writer",
kuttāb "writers", kataba "he wrote",
yaktubu "he writes", etc.
Sometimes, morphological rules are
applied and letters are either
transformed to others or deleted.
The root for "water" for example is
mauh but it is written and pronounced
mā’. Syntactic forms of nouns and
verbs are both, well defined and easily
distinguishable. According to an
unproven but commonly accepted
conjecture among ancient Arab
linguists, this specific word structure as
well as morphological rules associated
with it helps avoiding ambiguous
meanings and enable very compact
word-lexica [Abdelwahab 1986].
Evidently, such an AP would be
equivalent to AU.
Turning our attention to the problem of
finding the semantics of whole
sentences in English, the required AU
becomes much more complex and
assuming that AU uses LFG (Lexical-
Functional Grammar), word-problems
for LFGs are known to be NP-hard
[Berwick 1982].
LFG views language as being made up
by multiple dimensions of structure3.
Each of these dimensions is represented
as a distinct structure with its own rules,
concepts, and form. The primary
structures that have figured in LFG
research are:

• Representation of grammatical
functions (f-structure)

• Structure of syntactic
constituents (c-structure)

3 Lexical functional grammar. (2015, May 26).
In Wikipedia, The Free Encyclopedia. Retrieved
11:33, May 11, 2015, from
https://en.wikipedia.org/w/index.php?title=Lexi
cal_functional_grammar&oldid=664164917

Abdelwahab, N.
	

	

101	

101	

This dissociation of syntactic structure
from predicate argument structures
(essentially a rejection of Chomsky’s
Projection Principle4) is crucial to the
LFG framework. While c-structure
varies somewhat across languages, the
f-structure representation, which
contains all necessary information for
the semantic interpretation of an
utterance, is claimed to be universal.
The lexical entry (or semantic form)
includes information about the meaning
of the lexical item, its arguments, and
the grammatical functions (e.g., subject,
object, etc.) that are associated with
those arguments. Grammatical functions
play an essential role in LFG, however,
they have no intrinsic significance and
are located at the interface between the
lexicon and the syntax. LFG imposes
the restriction of Direct Syntactic
Encoding, which prevents any syntactic
process from altering the initial
assignment of a grammatical function
[Neidel 1994].
A thorough look into the 3-SAT-
reduction used in the proof of NP-
completeness of LFG word problems
given in [Berwick 1982] reveals the
deep reason for the presumable
intractability:
"One and the same terminal item can
have two distinct lexical entries,
corresponding to distinct lexical
categorizations; for example, baby can
be both a noun and a verb. If we had
picked baby to be a verb, and hence had
adopted whatever features are
associated with the verb entry for baby
to be propagated up the tree, then the
string that was previously well-formed,
"the baby is kissing John", would now
be considered deviant. If a string is ill-
formed under all possible derivation
trees and assignments of features from

4 Under the Projection Principle, the properties
of lexical items must be preserved while
generating the phrase structure of a sentence.

possible lexical categorizations, then
that string is not in the language
generated by the LFG. The ability to
have multiple derivation trees and
lexical categorizations for one and the
same terminal item plays a crucial role
in the reduction proof: it is intended to
capture the satisfiability problem of
deciding whether to give an atom Xi a
value of T or F."5
Considering the same problem in classic
Arabic, the above AU could be build
upon LFGs with another very useful
property of classic Arabic becoming
apparent: All words used in sentences
are annotated with signs revealing their
functions in grammar and meaning6.
Those signs are called tashkīl7. The
exercise of using tashkīl as an interface
between syntax and semantics to deduce
grammatical structures and intended
meanings in an Arabic sentence8 is
called I‘rāb9. The main purpose of I‘rāb
is to remove semantic ambiguity
resulting from syntactical similarity10.
I‘rāb can be an efficient procedure

5 [Berwick 1982] p. 103
6 This is consensus among of the majority of
ancient Arabic Linguists of whom Ibn Djinni
(920-1002) and Sibaweih (765-796) are two
prominent names.
7 Arabic diacritics. (2015, July 17). In
Wikipedia, The Free Encyclopedia. Retrieved
12:02, July 29, 2015, from
https://en.wikipedia.org/w/index.php?title=Arab
ic_diacritics&oldid=671851118
8 An exercise considered to be in the core of
any Arabic language course.
9 ʾIʿrab. (2015, July 22). In Wikipedia, The
Free Encyclopedia. Retrieved 12:03, July 29,
2015, from
https://en.wikipedia.org/w/index.php?title=%C
A%BEI%CA%BFrab&oldid=672637105
10 The meaning of the word I‘rāb is in fact:
Clarify. Also: I‘rāb has the same root as the
word: Arab- and ancient linguists believe that
this is attributed to the fact, that Arabs needed to
distinguish themselves from people who cannot
express clearly (all non-Arabs are called: Aājem
which essentially means "not clear").

Abdelwahab, N.
	

	

102	

102	

when it uses predetermined word- and
sentence structure rules applying them
directly to syntactical objects of the
concerned phrase. If, e.g., we have two
sentences: Naserun yashkuru Allaha (=
Naser thanks Allah), Nasara Alragulu
Akhahu (= the man supported his
brother) the terminal Naser which
might be - without tashkīl - confused
between verb and noun can be identified
using I‘rāb via its tashkīl: "ara" to be a
verb in the second phrase while it must
be a noun in the first one because the
"un" (also called Tanween) is only used
for nouns11. Ancient Arab- and Muslim
scholars devised a set of rules for the
syntactical recognition of the three main
categories of an Arabic sentence: Noun,
verb and preposition [Ibn Malek
1274]12. Deducing grammatical
functions using I‘rāb is similar to
deducing c&f-structures in LFGs, the
difference being that it is guided by
tashkīl, a purely syntactical attribute of
words. Thus, an LFG-based algorithm
doing I‘rāb would be AP.
According to another ancient
conjecture, there are subsets of the
classic Arabic language where a word in
a sentence is completely disambiguated
when its tashkīl is known and I‘rāb
does not need contextual information to
deduce grammatical functions. The
proof of this conjecture would imply

11 There are of course few exceptions where
tashkīl is not sufficient to distinguish between
verbs and nouns (like in the case of the word:
"Ahmadu"). Those cases have very
distinguished lexical as well as grammatical
categories and can be recognized via contextual
information.
12 The first five verses of the beginning of the
1000 verses long poem describing rules of
Arabic. Alfiya. (2014, October 16). In
Wikipedia, The Free Encyclopedia. Retrieved
16:14, July 29, 2015, from
https://en.wikipedia.org/w/index.php?title=Alfiy
a&oldid=629819477

our LFG-AP for this subset of Arabic to
be efficient13.
In the past paragraphs we discussed
examples of applications where AP
presumably can (e.g., NLP) or cannot
(e.g., multiplication) be substituted
without loss of generality (w.l.o.g.) for
AU. Do we have to go through all
possible algorithms and all possible
applications to be able to answer the
general question of whether an AP can
always be found and substituted for an
AU?

No.

According to complexity theory, it is
sufficient to show and investigate the
existence and properties of one single
AP for any known NP complete
problem, the prominent candidate being
the 3-SAT-problem. 3-SAT is the
problem of finding a satisfying
assignment for propositional formulas
having max. three variables in their
clauses14. It is hence a problem of logic.
Recognizing computability-related,
intrinsic properties of classic Arabic
makes it worthwhile to take a look at
efforts done by ancient Arab- and
Muslim scholars to facilitate logical and
mathematical deduction using syntax-
oriented techniques.

13 Modern approaches to Arabic NLP (like the
one described in [Attia 2008]) apply linguistic
theories to modern Arabic which is written and
spoken today without tashkīl (making therefore
any classical I‘rāb attempt fruitless). While
those approaches have certainly practical
validity, they fail to address the important
theoretical question: How far can the classical
Arabic language, written and spoken by ancient,
genuine Arabic speakers be formalized and thus
mechanized in a computable way? Such a study
may not only shed light on intrinsic natural
Arabic language properties, but also and
foremost on computability related ones.
14 Boolean satisfiability problem. (2015, July
8). In Wikipedia, The Free Encyclopedia.
Retrieved 16:15, July 29, 2015, from
https://en.wikipedia.org/w/index.php?title=Bool
ean_satisfiability_problem&oldid=670583991

Abdelwahab, N.
	

	

103	

103	

It is commonly known that the term
Algorithm is a Latin short-version of the
name Muhammad ibn Musa Al-
Khwarizmi (163-235AH / 780-850AD),
who is the author of the Arabic book
Kitab Al-Jabr wa-l-Muqabala (215AH /
830AD) [Al-Khwarizmi], i.e., The
Compendious Book on Calculation by
Completion and Balancing. This book
was translated into Latin in the 12th
century A.D. entitled Liber Algebrae et
Almucabola [Chester] with algebrae
and Almucabola being transliterated
into Latin from the Arabic title where
the term Algebra is derived from
Al-Jabr in the title of Al-Khwarizmi's
book [Abdelwahab et al.].
While there is widespread belief that
Kitab Al-Jabr wa-l-Muqabala is a
textbook for mathematics which, among
others, introduced general rules to solve
algebraic problems with one variable
reducible to quadratic equations, it is
first and foremost a textbook for Fiqh:
As traditionally and practically done in
Fiqh, the first half of Kitab Al-Jabr wa-
l-Muqabala introduced the applied
methodology and term definitions.
The remaining half of his book solves
legal questions on trade (commercial
transactions), geometry (plane surface
distributions) as well as testimonies.
Based on the newly introduced
algebraic method, the by far most
important part of Kitab Al-Jabr wa-l-
Muqabala deals with Islamic heritage
law.
Accordingly, Al-Khwarizmi’s Algebra is
just what its author says in the
introduction: "[a] work on algebra,
confining it to the fine and important
parts of its calculations, such as people
constantly require in cases of
inheritance, legacies, partition, law-
suits, and trade, and in all their dealings
with one another, or where surveying,
the digging of canals, geometrical
computation, and other objects of

various sorts and kinds are concerned."
[Al-Khwarizmi]
His method of solving linear- and
quadratic equations consisted of first
reducing the equation to one of six
standard syntactical forms15.
Other Muslim scholars working on
logical deduction, crucial for correct
application of Fikh-rules, adopted
Aristotelian syllogisms16 as means of
reaching correct rulings from right
premises [AlGhazali 505H]. Syllogisms
are simple deductive arguments
depending largely on properties of
terms used in logical assertions which
can also be checked in efficient
syntactical ways17. The completeness of
various formulations of syllogistic logic
has been demonstrated in [Lukasiewicz
1951]. Although syllogistic systems
provide some quantification properties,

15 where b and c are positive integers: (ax2=bx),
(ax2=c), (bx=c), (ax2+bx=c), (ax2+c=bx),
(bx+c=ax2)
16 Syllogism. (2015, July 1). In Wikipedia, The
Free Encyclopedia. Retrieved 16:25, July 29,
2015, from
https://en.wikipedia.org/w/index.php?title=Syllo
gism&oldid=669410736
17 To be considered valid, a syllogism must
follow six basic rules.
A syllogism must contain exactly three terms.
The violation of this rule is called the fallacy of
four terms.
A syllogism must have exactly three
propositions.
The middle term must be distributed at least one
time. Violating this rule results in the fallacy of
the undistributed middle. (When checking for
this and the next rule, it is useful to mark the
distribution of every term in the syllogism.)
No term that is undistributed in the premise may
be distributed in the conclusion. The violation
of this rule is either the fallacy of the illicit
major or the fallacy of the illicit minor
depending on whether the minor or major term
contains the fallacy.
A syllogism cannot have two negative premises.
If a syllogism contains a negative premise, the
conclusion must be negative; conversely, if it
contains a negative conclusion, it must contain a
negative premise.

Abdelwahab, N.
	

	

104	

104	

there is a lack of predicates which have
arity more than one as well as the
possibility to consider functions. Thus,
they can be seen as subsystems of
Monadic First-Order logic (MFO),
which is also less expressive than full
FOL. It has recently been shown
[Abdelwahab et al. 2014] that if a
formal system expressing Fikh is
chosen in such a way that it is both
logically complete and decidable, the
question of a complete18 and
consistent19 legislation is decidable20. If
this formal Fikh-system is additionally
chosen to be at least as expressive as
propositional logic, the deduction of
detailed sentences is efficient while the
deduction of general rules is NP-
complete.
Summarizing the above quick look into
ancient Arab- and Muslim scholars
efforts it appears that they adopted a
highly efficient approach of finding
validity of assertions in both, language
and logical argumentation which was
characterized by the extensive use of
syntactical patterns already existent in
input variables simplifying solutions of
otherwise hard problems (i.e.,
essentially finding and applying AP
instead of AU).

Does this approach work for 3-SAT?

An affirmative answer to this question
follows these steps:
Identify structure in logical variables,
similar to the case of tashkīl, linking
syntax to semantics of 3-SAT-formulas
(materialized in the combinatory space,

18 Complete Legislation means that every Fikh-
question has a ruling (verdict)
19 Consistent Legislation means that every
verdict has a reason
20 It is still an open research question whether
using syllogistic approaches for modern,
automatic Fikh-systems is a more appropriate
way to define efficient Fikh-algorithms or not

i.e., the truth table).21 This identification
reveals a distinct pattern property of
variables as opposed to the classic
container property. Having identified
this pattern structure, different classes
of 3-SAT-formulas appear to be
distinguishable. One of them can be
efficiently implemented in a
constructive AP.
This AP must be formalized, optimized,
and its properties studied and proven. It
should also be clear that the AP has
general validity and can indeed be used
as a substitute for known AU in any
instance of the 3-SAT-problem.
Eventually, algorithmic transformations
yield an application showing validity of
the new results.
To transparently demonstrate the step-
wise arguments, the following
organization of this paper is chosen:
Section I: Two experiments are
conducted in an informal way
presenting 3-SAT-problem instances
and Binary Decision Diagrams (BDDs)
used to solve them with intrinsic
structure unveiling self-evidently.
Eventually, a precise conjecture and an
objective are formulated.
Section II: The main formalism is
presented. In the center of this

21The reader is reminded that the beginning of
last century was marked by many thorough
investigations related to variables used in
logical statements. In fact, most fundamental
ideas about arithmetic were bound to ways of
viewing and using variables, e.g., Russell's
famous letter to Frege showing that Frege's
Basic Law V entails a contradiction. This
argument has come to be known as Russell's
paradox described more thoroughly in Principia
Mathematica [Russell 1910] as being caused by
the concept of a "true-variable" (German: echte
Veränderliche) which is an entity defined to be
ranging over a totality of entities to which it
belongs itself. In his simple type-theory, the
basis for all constructive approaches in modern
computer science, free variables - in defining
formulas - range over entities to which the
collection to be defined does not belong.

Abdelwahab, N.
	

	

105	

105	

formalism a defined AP is shown to
possess 10 properties which are used in
lemmas showing different behavior of
multiple versions of it. Proofs leverage
either straightforward induction or proof
by contradiction. The unveiled variable
structure is also shown to divide 3-SAT-
formulas into three interrelated types of
which only one produces efficient
results with the AP. Lemmas pertaining
to constructive properties and efficiency
of the chosen optimized version of AP
enable main theorems (Theorems 1&2)
and support the correctness of the
proposed conjecture and realization of
the objective.
Section III: Discusses the problem of
constructing a FBDD to identify
blocking sets in finite projective
planes22 where an application of the
new AP is shown to overcome known
exponential lower bounds.
This is achieved by showing that the
assumed problem structure in the
proof(s) of the exponential lower
bound(s) is resolved if a 3-SAT-Solver
using AP is put into action (Theorem 3).
The result is a polynomial upper bound
in the number of points/lines of the
projective planes instance.
The appendix contains exhibits of AP-
runs and extracts from final results for
Projective Planes of order 2 (Fano
Planes) and of order 3.

I) EXPERIMENTS, CONJECTURE,
AND OBJECTIVE
In what follows we are going to
informally introduce a new way of
visualizing variables/literals in 3-SAT-
CNF Clause-Sets and explain known
phenomena with its help.

22 Blocking set. (2015, February 18). In
Wikipedia, The Free Encyclopedia. Retrieved
18:14, July 29, 2015, from
https://en.wikipedia.org/w/index.php?title=Bloc
king_set&oldid=647680966

Specifically, a variable is usually
considered to be a universal container
of data, i.e.:

"[…] a storage location paired with an
associated symbolic name (an
identifier), which contains some
known or unknown quantity of
information referred to as a value. The
variable name is the usual way to
reference the stored value; this
separation of name and content allows
the name to be used independently of
the exact information it represents."23

With reference to above container
nature of variables theoretically
enabling unrestricted and/or
unstructured substitution of domain
values contained therein, we call this
classical way of considering variables
the container-view.
In contrast, this paper shows a variable,
especially a logical one, to possess an
intrinsic pattern revealing the canonical
distribution of its truth-values, hereafter
referred to as pattern-view.
The Clause-Sets used in this section are
very simple yet sufficient to show the
desired properties of variables and
provide with clues to more elaborate
thoughts. The end of this section is
marked by a conjecture and an
objective. They shall both constitute the
motivation behind the remainder of this
paper.

Experiment I: State-of-the-Art
Suppose S={{a,b,c}{x,y,z}} is a 3-
SAT-CNF Clause-Set where
a<b<c<x<y<z is the variable ordering
used in its truth table24 (hereafter
referred to as canonical ordering

23 Variable (computer science). (2015, July 23).
In Wikipedia, The Free Encyclopedia. Retrieved
07:15, July 27, 2015, from
https://en.wikipedia.org/w/index.php?title=Vari
able_(computer_science)&oldid=672714656
24 i.e., a is the leftmost, z the rightmost variable.

Abdelwahab, N.
	

	

106	

106	

BDD3

Below are ways of instantiating S according to four different orderings leading to
different BDDs25. As can be seen, BDD4 where instantiations did not violate the
canonical ordering represents a relatively small diagram:

25 We use a formulation of BDDs which allows Clause-Sets instead of single literals/variables to be used
in nodes. This shall be properly précised in the next sections (c.f. [Wegener 2000]).

BDD1

BDD2

Abdelwahab, N.
	

	

107	

107	

Does this mean that any instantiation
procedure following the canonical
ordering of an arbitrary 3-SAT-CNF
Clause-Set will possess the smallest
number of nodes?

No.
Take a look at the resolution of the
extension of S:

S’={{a,b,c}{x,y,z}{a,c,x}}.

The following BDD5 and BDD6 show
that ordering a<c<b<x<y<z produces a
BDD with only 7 unique-nodes
compared to 8 achieved by the
canonical one.

BDD4

BDD6

BDD5

Abdelwahab, N.
	

	

108	

108	

How can this be explained?
First: Using the canonical ordering in
prioritizing variable instantiations for S
produces better results than using
arbitrary ones.
Second: This very canonical ordering
fails to produce the best result in the
extended case S’.
More generally: How do variable
orderings affect sizes of BDDs
constructed while resolving 3-SAT-
CNF clauses?26
In diverse literature related to subject
matter this central question is left
unanswered. The two related problems
of finding the best variable ordering for
BDDs (of various types) and finding a
minimal BDD are both known to be
NP-complete (c.f. [Bolling et al. 1996],
[Tani et al. 1993], [Guenther et al.
1999], and [Sieling 1999]).
Is there a way to acquire a deeper
understanding of the nature of variables
and their orderings in the context of
resolving 3-SAT-CNF-clauses?

Experiment II: Truth Patterns
Let S={{x1,x2}{x3,x4}{x0,x5}} be a CNF
Clause-Set. Then the truth table below
(TT. 1) can be constructed:

X0 X1 X2 X3 X4 X5 S
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
etc. …. … … … … …

Truth Table 1

We shall define the following strings for
each variable constituting what we call
a Truth Pattern (TP) for that very
variable27. Bits in such a string
represent rows in above table. If the

26 That variable ordering does affect sizes of
BDDs is undisputed.
27 Truth Patterns represent the enumeration of
all possible interpretations of the given Clause-
Set S from the perspective of the given
variable(s).

value of the variable in the respective
row i is 0, the string has in bit i the
value 0, else it has the value 1. Doing
this for the six variables in S yields the
following Set of strings:

SX0 = 32(0) 32(1)28 SX1 =
2(16(0)16(1))29 SX2 = 4(8(0)8(1)) SX3
= 8(4(0)4(1))
SX4 = 16(2(0)2(1)) SX5 = 32(1(0)1(1))

Forming the equivalent TPs for clauses
{x1,x2},{x3,x4},{x0,x5} which contain
pairs of variables/literals is eventually a
simple bit-OR operation which shall be
called PatternOr giving the following
results:

S{X1,X2}=PatternOr(SX1,
SX2)=2(8(0)8(1)16(1))30
S{X3,X4}=PatternOr(SX3,
SX4)=8(2(0)2(1)4(1))
S{X0,X5}=PatternOr(SX1,
SX2)=16(1(0)1(1))32(1)31

Let S1= S{X1,X2}, S2= S{X3,X4}, S3=
S{X0,X5} and let S1’=8(0)8(1),
S2’=2(0)2(1), S3’=1(0)1(1), then the
following trees represent the above
strings:

28 This string can be understood as follows: in
the first 32 rows X0 is 0 and in the second 32
rows X0 is 1.
29 Meaning: the pattern 16(0)16(1) is repeated
twice.
30 Meaning: a pattern containing 8(0)8(1)16(1)
is repeated twice.
31 Meaning: the pattern contains 32(1) to its
right and 16 times the pattern 1(0)1(1) to its left.

Abdelwahab, N.
	

	

109	

109	

TP2

Resolving those strings/trees in
sequence amounts to performing a bit-
AND Operation (hereafter referred to as
PatternAnd) which does not need to be
applied on similar sub-patterns more
than once, e.g.:

PatternAnd(2(8(0)8(1)16(1)),
8(2(0)2(1)4(1))) = 2 x
PatternAnd(8(0)8(1)16(1),
4(2(0)2(1)4(1))) etc.

Thus, step 1 of this Sequential, Pattern-
oriented Resolution (SPR) shall be
(TP1):

When {S3} is resolved in step 2 with the
intermediate tree 2{S1S2} we get the
following (TP2):

Counting the unique non-leaf-nodes (blue)32 of this resulting tree yields 10. The BDDs
corresponding to the above patterns generated in steps 1 and 2 look like BDD7 and
BDD833:

32 Such nodes represent TPs repeating in specific places within the overall pattern {S1S2S3}, e.g.:
Starting with bit 16 we have sub-pattern: {S1S2}, before that it is: {S1S2S3’}.
33 BDDs in Experiment 2 differ from BDDs in Experiment 1 in the convention that -ve instantiations of
literals/variables go through left edges of the respective nodes rather than through right ones.

TP1

PatternAnd(,)=

Abdelwahab, N.
	

	

110	

110	

Now we repeat this exercise starting with S3 instead of S1 in TP3 and TP4 as follows:

BDD8

BDD7

TP3

PatternAnd(,)=

Abdelwahab, N.
	

	

111	

111	

This new resulting tree TP4 again has 10 nodes.
Can we get a better result for S={{x1,x2}{x3,x4}{x0,x5}}? Let us try to rename variables
to form: S’={{x0,x1}{x2,x3}{x4,x5}}. Obviously S=S’.

TPs for the new clauses and their tree representations:

SS{X0,X1}=PatternOr(SSX0, SSX1)=16(0)16(1)32(1)
SS{X2,X3}=PatternOr(SSX2,SSX3)=4(4(0)4(1)8(1))
SS{X4,X5}=PatternOr(SSX4, SSX5)=16(1(0)1(1)2(1))

TP4

& PatternAnd(,)=

Abdelwahab, N.
	

	

112	

112	

Now let us apply PatternAnd again:

The corresponding BDDs are as follows:

For the final result we only count six unique-nodes. How do we explain this? What did
the renaming operation change?

BDD9 BDD10

TP4

PatternAnd(,)=

& PatternAnd(,)=

Abdelwahab, N.
	

	

113	

113	

Conjecture and Objective
Let's elaborate on the formation of TP2:

by PatternAnd from

 and

Note first that the two patterns 2{S1S2}
and {S3} are 64bits long. S3 has its
whole right part constituted of 1-valued
bits while its left part is the pattern
16{S3’}. 2{S1S2} is basically repeating
pattern {S1S2} throughout its length.
{S3} is therefore twice as big as {S1S2}.
We say that {S3} has a larger Pattern
Length (PL) than {S1S2}34. This means
that PatternAnd is going to resolve for
the left part of the result {S1S2} with
16{S3’) and for the right part {S1S2}
with 32(1). The right part will consist of
{S1S2} while the resolution of the left
part looks like TP5:

34 Written: PL({S3})>PL({S1S2}) or
PL({X0,X5})>PL({{X1,X2}{X3,X4}}).

Where pattern 2x{S3’} is resolved with
sub-nodes of {S1S2} and x is adjusted
according to the respective PLs of the
involved sub-patterns. Because
PL({S3})>PL({S1S2}), i.e., the new
pattern to be resolved with the
intermediate tree had a larger PL than
the tree itself, a copy of that tree or parts
of it, here: {S1S2} had to be included in
the final result. We say that the
intermediate tree/node 2{S1S2} has been
split and we call this type of split N-
split35. Splits are defined more formally
in next sections and play an important
role in the development of main ideas of
this paper. When a split occurs, it
simply means that a number of new
nodes is added to the resulting tree
which is equal to the number of nodes
of the original tree/sub-tree, thus
causing a blow-up of the final result. In
the above example the only N-split
happening is the one caused by {S3},
since for the rest: PL({S3’}) < PL of any
sub-node in {S1S2}.
Let us take a look at the second example
of Experiment 2: When the tree {S3} is
resolved with 2{S1} a N-split occurs
between 16{S3’} and {S1} causing the
formation of pattern 8{S3’} in the first
step. Then when the intermediate tree is
resolved with 8{S2}, another N-split
occurs when pattern 8{S3’} is resolved
with 2{S2} causing the pattern 2{S3’S2}
to be formed (TP6):

35 i.e., Node-Split.

TP2

TP5

Abdelwahab, N.
	

	

114	

114	

The reader may have noticed that when
we renamed variables in the last
example of Experiment II, all newly
resolved patterns had PLs smaller than
the ones already existing in intermediate
trees (in the first step for example:
{SS2} has a PL smaller than any pattern
in any node of {SS1}). Therefore, no N-
splits occurred during resolution and the
total number of nodes remained small.
Note also that all BDDs for the trees
produced by the SPR-procedure shown
above have one thing in common: They
all use the canonical ordering of
variables.
Summary of Experiment II: Splits are
the cause of blow-ups in resolution-
trees of SPR-procedures. N-splits occur
when a newly resolved truth pattern TP
has a pattern length PL (in the canonical
ordering) larger than the PL of the
corresponding pattern in the node of the
tree/sub-tree to be resolved with TP.
Expressing this in terms of BDDs: If in
an SPR resolution-procedure - which
uses the canonical ordering as guideline
for variable instantiations - a clause C to
be resolved with a node of a tree/sub-
tree T has a leading literal/variable
whose index/order36 is less than the
index/order of all or any leading
literal/variable of clauses in the node of
T, then an N-split occurs. We can
reformulate this assertion as a safe-
condition posed on Clause-Sets:

36 Variables/Literals of smaller indices/order
have longer PLs.

If ∀S (S = Clause-Set to be resolved in
an SPR-procedure), ∀Ci, Cj clauses ∈
S, i<j: PL(Ci)>PL(Cj), then no N-splits
occur. This property is elaborated and
précised formally in Section II.
Can this explain the trees in Experiment I?
It obviously applies to the canonical
ordering case:

Red ellipses show the result of an N-
split of sub-tree {{x,y,z}{c,x}} which is
a child of the Clause-Set
{{b,c}{x,y,z}{c,x}} where indeed
PL({c,x})>PL({x,y,z}). What happens if
we attempt renaming? We can rename
S={{a,b,c}{x,y,z}{a,c,x}} to become:
S’={{a,b,c}{a,b,x}{x,y,z}}37.
The following BDD11 is then the final
result of resolution:

The number of nodes is reduced as
expected. Note that the achieved node-
count of seven seems to be the minimal
as well.

37 The reader is encouraged to verify the
correctness of this renaming. The renaming
procedure used here is elaborated and
formalized in Section II.

BDD11

TP6

Abdelwahab, N.
	

	

115	

115	

We are ready to propose the following
conjecture and to formulate the then
following objective:

Conjecture
If in an SPR-procedure solving a
problem P by resolving a 3-SAT-CNF
Clause-Set S, all generated sub-
problems P’ can be expressed using
Clause-Sets S’ which have safe-
conditions preventing big splits, then
the canonical ordering ∏ of variables
in S is a near-to-optimal ordering
producing a near-to-minimal BDD for
P whose number of nodes is polynomial
in the size of S. In case some sub-
problem P’ produces a Clause-Set S’
which is not safe, in this particular
sense, S’ can be renamed and arranged
to form a safe Set S’’ which imposes
another canonical ordering ∏’ on P’
resulting - in addition to ∏ - in a BDD
for P with a polynomial number of
nodes in the size of S and near-to-
optimal as well.

Objective
Construct a 3-SAT-CNF-Solver based
on SPR-procedures using canonical
orderings and safe-conditions. The
Solver should be able to generate BDDs
whose number of unique-nodes is
polynomial in the length of input-sets.

Despite the conjecture and objective
being described separately, they
represent interdependent ways of
tackling both, the NP-problem and the
related BDD-minimization-problem
with SPR-procedures being on center-
stage. The remainder of this section is
dedicated to the proof-strategy of the
conjecture and achieving the objective.
The indicated sequence is not exactly
the one followed in Section II, but
enables a consistent overview about the
argumentation.
First, SPR-procedures are formalized
and their generic properties proven:

A new AP/canonical order-based
resolution-algorithm (GSPRA) is
defined binding the BDD construction
to Clause-Set-instantiation. The only
variable/literal instantiation rule applied
by this algorithm (materializing the
canonical order doctrine) being the
least-literal/head-clause-rule (Definition
2).
The safety condition proposed above is
elaborated to divide arbitrary 3-SAT
Clause-Sets into three types:

• linearly ordered
• linearly ordered, but unsorted
• almost arbitrary Sets

GSPRA behaves differently for each
one of those types. For linearly ordered
Sets it is shown that no ‘big splits’ of
BDDs can be produced by GSPRA
during resolution. Big splits refer in this
work to ones causing exponential
behavior. Properties of GSPRA or its
extension GSPRA+ relevant to the
conjecture include:
a) The fact that any arbitrary variable

ordering used in solving a 3-SAT-
problem can always be converted to
a canonical one using renaming so
that BDD-minimization is reduced to
minimization of canonically ordered
BDDs (Property 9).

b) The fact that the concept of
Algorithmic Equivalence38 of nodes
in BDDs constructed by SPR-
procedures is essentially Syntactical
Equivalence of their Clause-Sets,
thus facilitating the efforts to avoid
redundancies (Property 10).

c) The fact that BDDs generated by
GSPRA/GSPRA+ possess always a
structure which guarantees a minimal
number of nodes in their top-part.
(Properties 8, eventually 8’)

38 i.e., BDD nodes are only equivalent when all
their sub-nodes are equivalent as well.

Abdelwahab, N.
	

	

116	

116	

Properties of GSPRA/GSPRA+ relevant
to the objective include:
a) Expansion Property 2: Stating that in

constructed BDDs no nodes which
were not connected in steps <k can
be connected in steps >=k except in
trivial cases.

b) Property 4 then 4’: The only non-
trivial common-nodes created by
GSPRA/GSPRA+ are elements of a
fixed Set (called the ACS-Set).

c) Uniqueness of instantiation results
(Property 5): Stating that children of
a Clause-Set are equivalent whenever
instantiation literals leading to them
are equivalent as well.

d) Properties 8, eventually 8’ (same as
the foregoing).

Second, lemmas related to the
conjecture are formulated and proven.
Their interdependencies are shown in
Fig. 1.

Lemma 14 and 15 show that BDDs
produced by GSPRA+ are minimal
compared to those produced by any
procedure using canonical orderings
with a.a. and l.o.u Sets (respectively).
Both lemmas make use of Property 8’.
Lemma 16 uses Lemma 14 and 15 as
well as Property 9 to show that GSPRA+
produces BDDs which are minimal
even for procedures using orderings
other than canonical ones. It also uses
Property 10 to assert that those BDDs
are redundancy free. Lemma 17
provides evidence that BDDs produced
by GSPRA+ are always near-to-optimal.

Figure 1: Proof-Structure A

Lemma 16:

SRTs produced by GSPRA+ for a.a. Sets are both, redundancy
free and minimal with respect to procedures using a.a. and
l.o.u. Sets

Lemma 17:

SRTs produced by GSPRA+ for a.a. Sets are always near-to-
optimal

Property 9:

Generality of
canonical ordering

Property 10:

Algorithmic Equivalence
 =

Syntactical Equivalence

Property 8’:

Minimal SRT-structure

Lemmas 14&15:

SRTs produced by GSPRA+ are
minimal compared to trees
produced by any procedures
using canonical orderings for
a.a. and l.o.u. Sets

Abdelwahab, N.
	

	

117	

117	

Third, lemmas related to the objective are formulated and proven. Their
interdependencies are shown in Fig. 239:

Figure 2: Proof-Structure B

39 Proof-Structures provided here are meant to assist critical readers to find flaws in arguments and/or
conclusions drawn in this paper.

Lemma 9:

SRTs produced
by GSPRA+
possess at most
only trivial size
1 splits

Lemma 3:

S.o. SRTs
possess at
most only
trivial size 1
splits

Lemma 2:

CNs in s.o. Sets cannot be
split when augmented in size
using CNALs within an
instantiation block. Trivial
CNs can be avoided.

Lemma 19:

Complexity of FGPRA+ is O(M^9), M number of clauses in an
arbitrary Clause-Set S which is 3-SAT, CNF

Lemma 18:

FGPRA+(S)=GSPRA+(S)
for S arbitrary Clause-Set

Property 5:

Uniqueness of
instantiation results

Lemma 13:

Total number of unique-nodes in the SRT produced
by GSPRA+ for arbitrary Clause-Sets is O(M^4)

Lemma 12:

SRTs produced
for M=1,2 a.a.
Clause-Sets have
O(M) unique-
nodes Lemma 8:

Any two nodes
which are equal
via some
mapping have a
common
syntactical form
(CRA-form)

Property 4’:

The only non-
trivial CNs created

by GSPRA+ are
elements of the

ACS-Set

Property 8’:

Minimal SRT-
Structure

Property 2:

Linear Expansion of
SRTs

Abdelwahab, N.
	

	

118	

118	

Lemma 18 shows that the BDDs
produced by FGPRA+, the algorithm
which resolves Clause-Sets in parallel,
are equivalent to those produced by
GSPRA+. This lemma uses Property 5.
Lemma 13 is central showing that the
number of unique-nodes in an SRT
produced by GSPRA+ for Clause-Sets of
size M is in O(M4).
The main observation is that all new
nodes generated in any step by GSPRA+
are only non-trivial common-nodes, i.e.,
members of a fixed Set (Property 4’). It
uses Lemma 12 in its Base-Case which
asserts that for M=1,2 the number of
unique-nodes is in O(M) for a.a.
Clause-Sets. Lemma 9, the one related
to existent splits in GSPRA+ products,
assures that there cannot be big splits in
a final GSPRA+ tree. This is a
generalization of the findings in Lemma
3 which is concerned with s.o. products
of GSPRA. Lemma 3 in its turn uses
among other insights the fact that if
CNs in s.o. Sets are guaranteed not to
be augmented in size except using
CNALs, then they won’t split if their
sized become >1 in any further steps
within an instantiation block (i.e., when
they are not supported). Lemma 8 is
used as well. It states that any two
Clause-Sets which are equivalent-via-
mapping possess a common syntactical
form, facilitating thus the process of
forming common-nodes. Property 8’ is
also used by this lemma. Lemma 19
studies complexity of every operation
used by FGPRA+ assuming that there
are always O(M4) unique-nodes in a
final BDD (Lemma 13,18) to find out
that the overall complexity of FGPRA+
is in O(M9). The detailed plan of
Section II looks like this:
II A) all concepts discussed above are
formally defined:
Definitions 1&2 concern almost
arbitrary (a.a.), linearly ordered (l.o.)
and linearly ordered, but unsorted

(l.o.u.) Clause-Sets and the GSPRA as
well as tree/graph structures (called
SRTs) used by it. SRTs are
generalizations of BDDs binding nodes
to instantiated Clause-Sets instead of
single literals. GSPRA implements one
instantiation rule (called least-
literal/head-clause-rule).
Definitions 3&4 introduce properties as
well as special types of SRTs: strongly
ordered (s.o.) and loosely ordered
(lo.o.).
Definition 5 formalizes the concept of a
common-node (CN) in an SRT showing
different types of CNs.
Definition 6 introduces the concept of a
Dependency Graph (deduced from an
SRT) which is equivalent to the known
FBDD.
Definition 7 formalizes the notion of
Algorithmic Equivalence of nodes
which is central in defining minimal
SRTs40.
Section II B) introduces Lemma 1,2 and
Corollary 1 which are mainly concerned
with the existence and form of CNs in
s.o. and lo.o. SRTs as well as the
following intrinsic properties of
GSPRA:
Property 1: completeness/truth table

 equivalence of GSPRA
Property 2: expansion of SRT
Property 3: linear derivation of clauses
Property 4: generation of non-trivial CNs
Property 5: uniqueness of instantiation results
Property 6: Syntactical Equivalence
Property 7: FBDD equivalence, branch

 linearity
Property 8: SRT structure
Property 9: generality of canonical orderings
Property 10: Algorithmic Equivalence
 = Syntactical Equivalence

40 Binding nodes in SRTs to Clause-Sets
(instead of single literals as in typical BDDs)
allows minimization efforts to be reduced to
finding syntactically equivalent Clause-Sets
instead of fulfilling semantic criteria dependent
on the nature of the Boolean function on hand
as is usually the case.

Abdelwahab, N.
	

	

119	

119	

II C) studies split conditions in s.o. Sets.
Lemma 3 demonstrates that "big" splits
cannot exist indicating already that GSPRA
procedures working with such Sets are not
exponential in nature.
II D) studies renaming algorithms
CRA/CRA+ and their properties
(Lemma 4,5,6,7) where termination and
algorithmic fulfilling of l.o. conditions
are shown.
II E) summarizes all ideas in an
algorithm GSPRA+ which is shown to
possess many interesting properties, the
main one being that it produces SRTs
which are "aligned"41 with a total
unique-nodes count in O(M4) where M
is the number of clauses in an arbitrary
3-SAT-CNF-Set (Lemma 13). Those
SRTs are shown in Section E-5 to be
near-to-minimal as well.
II F) shows a parallel version of the
same algorithm (FGPRA+) whose
complexity is in O(M9) concluding
Section II with a definition of a new
Solver algorithm and Theorems 1,2
which prove that P=NP and that
FGPRA+ is a polynomial 2-
approximation algorithm of MinFBDD,
the problem of minimizing an FBDD of
a Boolean function, respectively.
Theorem 2 shows that Boolean
functions possess minimal FBDDs
which have polynomial node-counts (in
M, the number of clauses used in
expressing them as 3-SAT-CNF-
formulas).

II) 3-SAT-CNF CLAUSE-SETS AND
THEIR RESOLUTION
A) DEFINITIONS

Definition 0: nomenclature
For a Set S of general 3-SAT-CNF-
clauses of the form:

41 A useful property amounting to making all
Clause-Sets in an SRT l.o. (formally précised in
Section E).

{{a1,b11,c11}{a1,b12,c12}..{a1,b1i,c1i}
{a2,b21,c21}{a2,b22,c22}..{a2,b2j,c2j}…
{am,bm1,cm1}{am,bm2,cm2}....{am,bmk,cmk}}

a) LIT (S): is the Set of all unique
literal names/indices in S

b) LEFT(x,C)/RIGHT(x,C), x
literal name/index: Is the Set of
all literal names/indices
occurring in S to the left/right of
literal x in clause C.

c) SortOrder(x,S), for x = clause
and S = Set: Is an integer
number representing the sort
order of x with respect to other
clauses of S.

d) First literals in any clause are
called head- while last ones are
called tail-literals

e) If C is a 3-SAT-clause, then the
cardinality of the Set of all
clauses which are permutations
of literals in C (called short:
perm(C)) is called Resolution
Complexity Coefficient (RCC).
It is given by the formula:
RCCk-SAT=kPk+kPk-1+kPk-2….+kP1
i.e., for 3-SAT
RCC3-SAT= 3P3 + 3P2 +3P1= 1542

f) Clauses created through
instantiations of literals of a
clause C with TRUE or FALSE
are called derivations of C. They
are called linear derivations if
consecutive instantiations
respect the linear order of
literals in C43.

g) Indices are used to stand for
literal names (i.e., 1,2, etc.
instead of x1,x2,..).

42 Recall that nPr=n!/(n-r)!
43 Examples of derivations of clause C={x,y,z}
for any ordered indices x,y,z are {x,z} and {y,z}
of which only the latter is a linear derivation.

Abdelwahab, N.
	

	

120	

120	

Definition 1: For a Set S of the above
form, S is called linearly ordered (l.o.)44
if the following Conditions hold:

a) ∀ai,bij,cij∈Ci+j: ai<bij<cij literal
names/indices are sorted in
ascending order within clauses.

b) S is sorted by ai & bij & cij in
ascending order taking into
consideration negation signs45.
In other words: ∀i,j indices of
clauses: if i<j then head-literal
of Cj >= head-literal of Ci.

c) ∀x ∈ LIT(S), ∀C ∈ S:
if x not ∈ LEFT(x,C) then
∀y ∈ LEFT(x,C): x>y
(all new names/indices of
literals occurring in a clause C
of S are strictly greater than all
the literal names/indices to their
left).

d) Clauses appear only once in S.

If S fulfills Conditions a), c), d), but not
b) it is called linearly ordered, but
unsorted (abbreviated l.o.u.)46. If S
fulfills Conditions a), d) only it is called
almost arbitrary (a.a.)47. Clause-Sets of
the form: S={{ax,bx1,cx1}{ax,bx2,cx2} ..
{ax,bxi,,cxi}} are called blocks and are
referred to by the name of the leading
literal (in this case S is called ax-block).
Clauses having ax as leading literal are
said to belong to the ax-block.

44 This formulation leads to the condition: ∀Ci,
Cj clauses ∈ S, i<j: PL(Ci)>PL(Cj) proposed in
Section I for all Clause-Sets S in a resolution-
tree.
45 i.e., {1,2,3} comes before {1,2,4} and
{¬1,2,3} before {1,2,3}or vice versa.
46 Corresponding to the condition: ∃Ci, Cj ∈S,
i<j: PL(Ci)<PL(Cj) for some Clause-Sets S in a
resolution-tree.
47 Corresponding to the condition: ∀Ci, ∃Cj ∈S,
i<j: PL(Ci)<PL(Cj) for some Clause-Sets S in a
resolution-tree.

Definition 2: The Generic Sequential
Patterns Resolution Algorithm
(GSPRA) applied on a Set of a.a. 3-
SAT-CNF-clauses S consists of the
following procedure:

0. Preliminary step: Choose the
shortest clause Ci of S to be
instantiated first. Sort S so that
C0=Ci48.

1. Take C0 and create the binary tree49:

In this binary tree, nodes contain
Clause-Sets and edges represent truth
assignments of single literals (called
instantiations of Clause-Sets and/or
literals). Branches are lists of nodes
starting with base 1 until a True- or
False-leaf. Note: Head-literals such
as a1,b11, etc. have precedence in
instantiation over other literals. Also
note that left edges always represent
+ve instantiations of head-literals of
the current clause while right edges
represent -ve instantiations of the
same.

2. Resolve each following clause Ci of
S with the intermediate resolution-
tree (IRT) created in the previous
step, which in the beginning is equal
to the tree shown in T0, as follows:

48 Choice of C0 may be crucial for GSPRA.
Usually minimization of the number of nodes in
the top-part of the tree is sought by choosing the
shortest clause as is done here for the sake of
illustration. But this doesn't necessarily lead to
minimal SRTs when unique Clause-Sets are
considered. In Section E a procedure is
dedicated for this part of the algorithm.
49 An example with only +ve literals is used
(w.l.o.g.).

T0

Abdelwahab, N.
	

	

121	

121	

a) Follow left- then right edges of
the current IRT-node in a depth
first way substituting the literal
written on the edges by TRUE
and FALSE respectively if it
exists in Ci. Set Ci’ and Ci’’ to be
the resulting derivation (Ci’ for the
left side, Ci’’ for the right side). If
the literal does not exist in Ci, put
Ci’=Ci’’=Ci.

b) Resolve resulting derivations Ci’,
Ci’’ of step a. with the left- then
right IRT-nodes (respectively) by
calling step 2. recursively

c) If left- or right Clause-Sets of
current IRT-nodes are TRUE,
then substitute them with the trees
for Ci’ or Ci’’ (formed like in 1.)

d) If left- or right Clause-Sets of
current IRT nodes are FALSE,
keep them FALSE

e) Return the final tree as a result of
the resolution-procedure. It is
called Sequential Resolution Tree
(SRT). This tree can be simplified
to form a directed graph if
nodes/leafs have the same Clause-
Sets/values joined together. In the
remainder of this paper we shall
call those graphs simply trees or
SRTs as well. Thus, an SRT is
(also) a directed, acyclic graph
<V, E> where V is the Set of all
Clause-Sets, E the Set of ordered
pairs <v1,v2> , v1,v2 ∈V
representing instantiations of
Clause-Sets having a parent-child
relationship and produced during
GSPRA(S).

3. A node in an SRT is symbolized by
[x] if the lead clause in its Clause-Set
is headed by a least-literal x.
Moreover: x is called the Name
Literal (NL) of this Clause-Set/node.

4. As per 2 a): Edges going out of an
SRT node [x] represent instantiations

of the NL x of the Clause-Set of that
node (this fact is called the least-
literal/head-clause-rule).

5. The Clause-Set in an SRT-root-node
is called Base Clause-Set of the base-
node of the SRT or simply ‘Base
Clause-Set’

6. The rank of a clause is the number of
literals contained in that clause. Rank
of a node/Clause-Set in an SRT is an
integer representing the maximum
number of literals in any clause in
the Clause-Set of that node.

7. The size of a node in an SRT is an
integer representing the number of
clauses in the Clause-Set of that
node.

8. Nodes of sizes 0 or 1 (TRUE- or
FALSE-leafs) are called Resolution
Termination Nodes (RTNs) of the
SRT.

9. A variable ordering of a problem p
(∏p) expressed as a 3-SAT-CNF
Clause-Set S and resolved by any
resolution procedure PR is a list of
integers <i,j,k,…> representing
indices of literal/variable names
indicating priorities of instantiations
of literals/variables of S used by PR.
If all sub-problems of p have the
same ordering, subscript p is omitted
and we call ∏: BDD-ordering.
If either ∏p or ∏ represent the
canonical ordering of variables the
following notation is used: ∏c

p or ∏c.

Abdelwahab, N.
	

	

122	

122	

Motivation 1: Example Resolving Monotone, +ve, 2-SAT Clause-Sets using
GSPRA50
To see GSPRA for a.a. Sets in action refer to below SRTs generated in sequence for Set
S={{0,3}{0,7}{1,2}{1,4}{5,6}{3,8}}:

50 Observing the algorithm work on monotone, +ve 2-SAT does not reduce the generality of properties
discussed below which occur even with this restricted version of the problem.

T1

T3

T4

T2

Abdelwahab, N.
	

	

123	

123	

Note the following aspects apparent in
the above GSPRA(S) sequence:

1. Number of nodes (not counting leafs)
increase from T1 to T4 in the
following way: 3,5,8,15, i.e., almost
doubling between trees T3 & T4.

2. ({1,2}{1,4}{5,6}), the node marked
with an ellipse in T3 is a node
common between two branches and a
subset of the original Clause-Set S.

3. This common-node as well as all its
sub-nodes is copied once when T4 is
formed and the copy is processed
with the new clause {3,8} while
retaining the original node.
Thus, two nodes are formed in T4:
({1,2}{1,4}{5,6}) and ({1,2}{1,4}
{5,6}{3,8}). This is called a CN-split
of ({1,2}{1,4}{5,6}) and plays an
important role in the complexity of
GSPRA (c.f. Definition 8 below).

4. The common-node ({1,2} {1,4}
{5,6}) is of rank 2 which is the same
rank as the base-node rank. We can
explain splitting of such a common-
node as follows: While solving a
problem having a certain order of
magnitude the algorithm needs to
duplicate the result of solving a sub-

problem having the same order of
magnitude.

This behavior is the cause of
inherent exponential complexity.

Definition 3: An SRT of a Set S of a.a.
3-SAT-CNF-clauses is called
sequentially-ordered if every Clause-Set
in any non-leaf node of the SRT has
only one clause or its derivation or has
the form: S={Ci, Cj, … CM } for some
i<j<….<M, M number of clauses in S,
where Cx’s are clauses or derivations of
clauses in S.

Definition 4: An SRT of a Set S of 3-
SAT-CNF-clauses is called strongly
ordered (s.o.) if every Clause-Set
formed during resolution is linearly
ordered (l.o.). In that case the Set S is
also called strongly ordered. Strongly
ordered Sets are always linearly ordered
whereby the inverse is not always the
case, i.e., some s.o. Sets may have
Clause-Sets in their IRTs which are not
l.o.
If a Set S has a base Clause-Set which is
l.o. while some other Clause-Sets in its
generated IRTs are l.o.u., then S as well
as its SRT is called loosely ordered
(lo.o.), e.g.:

Definition 5: A node [q] is called
common-node (CN) in an SRT of a Set
of 3-SAT-CNF-clauses S if in step k of
the resolution it becomes a common
child to two or more nodes ([x], [y], [z],
… (Fig.2)). This happens when x,y,z,…

literals are replaced by TRUE or
FALSE in their respective Clause-Sets.
The common-node [q] contains the first
appearance of its name literal (NL) q in
all branches of the SRT containing
[x],[y],[z],..

S.o. Tree

Lo.o. Tree

Abdelwahab, N.
	

	

124	

124	

X Y Z ……..

Q

Figure 2: Common-node generated in <=k.

Types of common-nodes for 3-SAT-
CNF-clauses are: Head-, Middle- and
Tail Common-nodes (HCN, MCN, and
TCN).

More precisely:

− A CN [q] is called HCN if its
Clause-Set has a leading clause C
∈ S, NL q is head of C

− A CN [q] is called MCN if its
Clause-Set has a leading clause C’
which is derivation of a C ∈ S, NL
q is middle of C

− A CN [q] is called TCN if its
Clause-Set has a leading clause C’
which is derivation of a C ∈ S, NL
q is tail of C

Examples for both HCN and TCN are
provided in Lemma 2 and its respective
remarks.
A CN produced in step k is called
“supported” in a step >k if its Clause-
Set gets clauses appended to its head
which don’t belong to any block which
was instantiated in steps <=k by one or
more of its parents. A parent-set of
such a CN is called “supporting”. In
Fig. 3 an example is shown for the CN
{b,c} which is supported by clause
{d,e} not belonging to block Ba:

If a head-clause of a CN is also a clause
of one of its parent-sets, then this
parent-set is called “direct parent” of the
CN. The CN itself is called “direct
child” (Fig.4-a):

Definition 6: A dependency graph
(DG) of a Set of 3-SAT-CNF-clauses S
is a directed, acyclic graph <V,E>
where V is the Set of all NLs, E the Set
of ordered pairs <v1,v2> , v1,v2 ∈
representing instantiations of NLs
produced during GSPRA(S). DGs can
be deduced from SRTs in a canonical,
straightforward way51 and used as
practical alternatives for truth tables
(c.f. Property 1). They are equivalent to
Free Binary Decision Diagrams
(FBDDs)52 as shown in Property 7. The
following two properties define a DG:

1. Each NL can appear only once in a
branch.

2. Branches can have different
literal/variable orderings ∏p

depending on the sub-problem p they
belong to53.

51 By abstracting in each resolution-step for
each node of the SRT the least-literal of the
head-clause and building out of it a
corresponding node in the DG.
52 FBDDs are normally generated independent
of SAT-Solvers or by recording - on top of
resolution-procedures - variable assignment
decisions encountered while trying to find a
solution. The methods described here produce a
canonically ordered FBDD(=DG) representing
existent variable alignments in the used clauses.
This FBDD is the core product of our Solver
rather than a mere byproduct.
53 In contrast to OBDDs in which one
literal/variable-ordering is governing the whole
graph. Figure 3

Figure 4-a

Abdelwahab, N.
	

	

125	

125	

A leaf of a DG is a node whose value is
TRUE or FALSE. Positive leafs have
the value TRUE. Fig. 4-b shows an
example of a DG for the exemplary s.o.
tree in Definition 4.

Definition 7: Algorithmic
Equivalence of nodes

Two nodes of similar size >1, n1∈
SRT1, n2 ∈ SRT2 are said to be
Algorithmically Equivalent (n1 ≈ n2) iff

a) their Clause-Sets are (not necessarily
Syntactically) Equivalent54 and

b) their respective left- and right sub-
nodes are Algorithmically
Equivalent.

For size =1: n1 ≈ n2 iff their Base-
Clause-Sets form isomorphic SRTs, i.e.,
SRTs having the same structure of
leaf/non-leaf-nodes, e.g. (Fig. 5 and 6):

54 They might be equivalent modulo renaming
of variables. This loose notion of equivalence
shall be hardened for GSPRA to become a
syntactical one as shall be seen in the properties
below.

Is not isomorphic to:

B) PROPERTIES OF GSPRA AND
DEFINED STRUCTURES

The following ten properties of the
GSPRA algorithm as well as Lemma 1,
Corollary 1 and Lemma 2 are valid for
s.o., lo.o. and/or a.a. 3-SAT-CNF-Sets
as indicated in each respective place
below. When nothing is indicated, a.a.
Clause-Sets are meant. For a summary
of the main results of this section refer
to Fig. 41 at the very end of this section.

Property 1 (completeness, truth table
equivalence): GSPRA is a complete,
truth table equivalent algorithm, i.e., it
returns TRUE iff there exists a variable
assignment in the truth table constructed
for the Set S which satisfies it and
FALSE otherwise.

Proof: (by induction on M, the number
of clauses in S)

Base: M=155 for the following tree:

55 The case used here (w.l.o.g.) is not the only
permutation of +ve/-ve literals a,b,c combined
in a clause. The reader is encouraged to check
other permutations and verify the validity of the
property for M=1 in a similar way to the one
shown here.

Figure 4-b

Figure 5

Figure 6

Figure 7

c

{¬b,c}

{a,¬b,c}

TRUE
{c}

a ¬a

b ¬b

TRUE

¬c

FALSE

TRUE

Abdelwahab, N.
	

	

126	

126	

If we construct the truth table

A B c S
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

and use the following tree propagation
rule applied to any node in the tree:
"If the input value of the literal written
on the edges of the node is TRUE go
left, else go right. Apply this rule to all
nodes in the tree until you reach a leaf".
Eventually, the obtained results are
equivalent to the ones found in the truth
table. Let us check the two marked
cases using the tree. For "010" the base-
node will take us right through edge ¬a,
then left through edge b, then right
again through edge ¬c, making the
overall value FALSE as stated in the
truth table. For "101" we are taken by
edge a directly to the value TRUE
which is the value of the truth table as
well. The reader is encouraged to check
all the other truth table entries for
validation.

Induction Hypothesis: SRT for M-
clauses is equivalent to the truth table
constructed for all variables whose
literals are used in the M-clauses.

Induction Step: When clause CM+1 =
{x,y,z} is processed the following cases
can be distinguished:

1. x,y,z are new variables in S: GSPRA
will propagate CM+1 until leafs are
reached. If leafs are +ve then the tree
representing CM+1 will substitute
them, otherwise FALSE is left (as
instructed in Definition 2, step 2 c)
and d). Each branch not ending with
FALSE will thus have as extension a

tree giving all possibilities of
variable assignments for the three
new variables (as seen in the Base-
Case). A branch which terminates
with FALSE is guaranteed by
induction hypothesis to reflect the
fact that the Clause-Set is not
satisfiable even without taking the
new clause into consideration. Thus,
the newly constructed tree is
logically equivalent to an extended
truth table taking into account the
new variables56.

2. x exists in S, while y,z are new:
When CM+1 is propagated through
branches of the tree, those
terminating with FALSE - as seen in
the previous case - are not dependent
on the new clause and will keep their
values and guarantee (per induction
hypothesis) that the Clause-Set is not
satisfiable. For all those branches
which terminate with TRUE it either
might be the case that this truth value
is independent of the new variables
and thus the truth value is kept as it
is per induction hypothesis57, or the
branch is extended to give all
possibilities of assignments of the
new variable(s) as before58. In both
cases the newly constructed tree
logically corresponds to an extended
truth table which contains values for
two more variables in all branches
where it is relevant.

3. x,y or x,y,z are already in S: Either
no new nodes are added to the tree in

56 Although syntactically the number of entries
of the truth table is bigger, since the tree is
discarding all unnecessary variable/value
combinations (such is the case when the Clause-
Set has already reached the value FALSE and
adding new variables cannot change this fact).
57 like the case of node {2}{2,3} in the above
s.o. tree: Adding the clause {2,3} to the node
{2} did not change the truth value of its children
which were leafs.
58 in the same s.o. tree compare the case of
node {1,2} before and after adding {2,3}.

Abdelwahab, N.
	

	

127	

127	

all those branches where variables
already exist and where per induction
hypothesis the tree is already
equivalent to the right truth table
portion in those branches or x and/or
y and/or z are new in some branch. In
that case they will be added to the
+ve leafs accordingly and correspond
to specifications of truth table values
which were don't cares before59.
(Q.E.D.)

Illustration of Property 1 for the case
(M=2) 60:
Suppose S={{¬a,b,¬c}{b,c,¬d}}, its
SRT is as in Fig. 8:

The following Truth Table 2 is the truth
table for the above tree. If a variable
value of the truth table does not apply to
a tree node (simply because the literal
does not exist in the Clause-Set), skip it.

59 For illustration: Consider the case where
{1,2} is added to {0,1}{0,2}. The left branch of
the tree {0,1}{0,2} which is the leaf TRUE,
corresponds to the fact that values of 1&2 are
not relevant for the overall value of the formula
{0,1}{0,2} when literal 0 is set to TRUE
following this particular assignment branch, i.e.,
they are don't cares. When {1,2} is added, its
tree replaces TRUE indicating for what values
of 1 & 2 the same truth table gives truth values
capturing satisfiability conditions of the newly
added clause {1,2}.
60 This property is known to hold for BDDs in
general and thus FBDDs as well, so there is no
surprise that DGs or SRTs possess it (c.f.
[Friedmann 1986]).

Example: Entry a=1,b=1,c=0,d=0 in the
table gives S=1. If starting at the base-
node and going left (because a=1)
through the +ve a edge, the node
{b,¬c}{b,c,¬d} will lead straight to the
value TRUE (since b=1).

A B C D S
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Property 2 (expansion of SRTs):
∀n1,n2 nodes ∈ SRT, n1<> n2: if n1,n2

are not directly connected in steps <=k,
then they cannot be directly connected
in steps >k except in the trivial case
when the new clause belongs to a block,
parents of nodes were instantiating in
steps <=k and n1, n2 become equivalent.
Moreover: Nodes of sizes j<=M
generated in step k are at most as many
as nodes of sizes j-1 existent in step k-1
not counting nodes generated through
splits in size-level j of the SRT.

Proof: One intrinsic property of
GSPRA is that it directly connects - per
definition - two nodes iff the Clause-Set
of one of them can be instantiated - in a
way respecting the least-literal/head-
clause-rule - to become the parent of the
other. Suppose we have at step <=k a
situation in the SRT as seen in
following Fig. 9 (left part): nodes n1,n2
are not connected. They both get

Figure 8

Truth Table 2

Abdelwahab, N.
	

	

128	

128	

instantiated through their least-literals
a,b to different directions in the tree.
Any further clause {x,y} in steps >k will
keep this situation intact, since a and b
remain the least-literals in their
respective Clause-Sets and cannot be
bypassed by clause {x,y} in the new tree
(Fig. 9 right part) even in the worst
case:61
Fig. 10 shows a trivial exception of this
situation where both nodes are merged
in steps >k (right) as the new clause
{i,a,b} belongs to a block Bi parents of
both nodes were instantiating in steps
<=k. The added clause makes N1
equivalent to N2 as seen. We call those
types of CNs: Trivial Common Nodes
(tCNs). They are formed in what we
call: Symmetric Blocks (SBs) to be
defined below and are included in the
properties/lemmas dealing with the
generation of CNs.

61 Worst case here means when {x,y} is
propagated through all the nodes as seen in the
figure. Otherwise it might be that some nodes
remain the same as in step k and are thus not
connected either.

Furthermore: As resolution is
sequential, then per definition the only
source of new j-sized nodes, j<=M, in
step k are j-1 sized ones in step k-1
which are resolved with the new clause.
This is not counting any nodes copied in
split-operations in the j-size-level of the
SRT of course. Thus, the number of
generated j-sized nodes in step k is
always bounded above by the number
of existent j-1 sized nodes in step k-1 if
split operations are not counted.
(Q.E.D.)

Figure 9

Figure 10

i

Figure 10

Base-Set/Node

N1: {a,..}{..}..
N2: {b,..}{..}..

......
a b

Base-Set/Node + {x,y}

N1: {a,..}{..}.. {x,y}
N2: {b,..}{..}.. {x,y}

......
a b

i

Base-Set/Node+{¬i,a,b}

N1: {a,b}
N2: TRUE

TRUE
{b}

a

FALSE TRUE

Base-Set /Node+{¬i,a,b}+{ ,a,b}

N1: {a,b}

TRUE
{b}

a

FALSE TRUE

Abdelwahab, N.
	

	

129	

129	

Property 3 (linear derivation of
clauses): GSPRA produces for s.o. and
lo.o. Clause-Sets only linear derivations
of newly resolved clauses at any
resolution-step62.

Proof: This property is also caused by
the least-literal/head-clause-rule
(Definition 2 5.). To see this consider
the case when during resolution of a
new clause C={x,y,z} with the IRT, C is
processed and gets instantiated by
putting y=FALSE for example resulting
thus is a derivation C'={x,z} which is
not linear. This can only happen - as per
the least-literal/head-clause-rule - if y is
the least-literal of a head-clause in that
step, i.e., there is a Clause-Set of the
form: {{y,...}...{x,y,z}....} which is
being instantiated. If variable x is
bypassed during this instantiation
process, then either x's first occurrence
is in {x,y,z}, i.e., it is a new variable,
and in that case it will constitute a
breach of the new variable names
condition (Definition 1 c)), or x
occurred before {x,y,z}. As x could not
have occurred in {y,...} because of the
sorting condition of literals within
clauses (Definition 1 a)), it must be the
case that x occurred in a clause between
{y,...} and {x,y,z}. But then x is still
new with respect to y and we still have a
breach of Condition 1 c). Thus, no non-
linear derivations are possible for newly
processed clauses through GSPRA if
SRTs are s.o. or lo.o.
(Q.E.D.)

Property 4 (generation of non-trivial
CNs): The only non-trivial CNs
generated in any step k by GSPRA
while resolving clause C of a Set of 3-
SAT-CNF-clauses which are s.o. or
lo.o., are identical with either C or
linear derivations of C.

62 Linear derivations of C being a proper subset
of perm(C).

Proof: Recall - as per Property 2 - that
non-trivial CNs generated in step k are
the ones which are not formed, because
C belongs to a block, some parents were
instantiating in steps <k. Suppose now
such a non-trivial CN is neither C nor a
linear derivations of it. This means that
a "legacy" node constructed in steps <k
became non-trivial CN in step k. For a
node to become CN, at least two nodes
have to be connected to it in a parent-
child relation as per Definition 5. This
can only mean that at least one new
connection has been established in step
k between two nodes which were
previously not connected. As per
Property 2 this can only happen in the
trivial case when C belongs to a block,
some parents were instantiating in
steps<k and the formed CN is a tCN.
Contradiction. Moreover: The linear
derivation property (Property 3) tells us
that only linear derivations of C can
become non-trivial CNs for s.o. and
lo.o. SRTs
(Q.E.D.)

Property 5 (uniqueness of
instantiation results): Let S be an a.a.
Clause-Set, S1, S2 any direct children of
S produced - through instantiations of
literals i,j respectively - by an
instantiation procedure using the least-
literal/head-clause-rule, then S1=S2 iff
i=j.

Proof: If i=j then it is obvious that
S1=S2=unique Clause-Set per definition
of any instantiation procedure63. If
S1=S2 then the question is: Can we
instantiate two different literals in S and
still get the same direct child Clause-Set
(i.e., can i<>j imply S1=S2). In general
this is possible. For example, the Set
S={{a,b,c}{x,y,z}} can yield
S1={{x,y,z}}=S2 if we use either

63 Remember that instantiation of literals is
done by replacing them in clauses with TRUE
or FALSE depending on used signs.

Abdelwahab, N.
	

	

130	

130	

i=a=TRUE or j=b=TRUE. However,
when an instantiation procedure uses
least-literal/head-clause-rules this
cannot happen, because at any step k,
producing a direct child, and for any
Clause-Set S there is only one least-
literal chosen for instantiation from
either a or b. Thus, if in a step and for
the same S literals are instantiated to
give the same child-set, then they must
be the same. Moreover: Once S is
instantiated this way in step k, the same
S is never instantiated again in steps >k.
(Q.E.D.)

Property 6 (Syntactical Equivalence):
Let S1, S2 be two a.a. Clause-Sets of
nodes n1, n2 of an SRT produced by
GSPRA such that S1 is instantiated in a
step k using literal a to produce S1Left,
S1Right, S2 is instantiated in the same
step k using literal i to produce S2Left
and S2Right, then: (S1Left=S2left and
S1Right=S2Right) iff S1=S2.

Proof: If S1=S2=S, then a=i and left-
and right direct-children Clause-Sets of
S are unique as per Property 5.
To see why the other direction is also
valid, consider Fig. 11 where S1 and S2
are instantiated using a, i (respectively)
to produce a common left Clause-Set
and using a,¬ i to produce a common
right one (rectangles). Suppose that
S1<>S2, i.e., there exists at least a clause
C ∈ S2 , but not ∈ S1. If C doesn’t
contain literals a, i then it should appear
in both left- and right Clause-Sets when
S2 is instantiated using i. This cannot be
the case, because S1 doesn’t contain C.
If C contains i but not a, then it
shouldn’t appear in one node (left or
right according to the sign of i in C), but
its derivation C’ containing literals
other than i (and a) has to appear in the
other side contradicting again the fact
that C doesn’t exist in S1. If C contains
a, but not i, then it should appear in the
left- and right child nodes contradicting

the fact that those nodes shouldn’t
contain any literal a, since it has been
instantiated through S1. Also: S1 doesn’t
contain C or any of its derivations in the
first place. Finally, if C contains both
a,i, then some derivation C’ will have to
appear in a child node contradicting the
fact that S1 doesn’t contain C. Therefore
S1=S2.
(Q.E.D.)

Figure 11

Property 7 (FBDD-equivalence,
Branch Linearity): Let f be a function
expressible in a.a. 3-SAT-CNF-form,
then:

a) The DG produced by GSPRA is
an FBDD.

b) Any FBDD produced for f can
also be produced by a procedure
which uses variable orderings, not
necessarily canonical, to guide
instantiation of literals in the 3-
SAT-CNF-representation of f.

Proof:
1. Remember that a DG can be

abstracted in a straightforward way
from an SRT (c.f. Footnote 51,
Definition 6). We have therefore to
show that: If b is a branch of the DG,
then the maximum size of b is N,
where N is the number of variables
in S, i.e., any variable appears only
once in b. Moreover: Each
resolution-step expands b by at most
3 new nodes. It is sufficient to see
that when the least-literal-rule is
applied to form a +ve edge, starting

S1

a ¬a

S2

i
¬i
i

Abdelwahab, N.
	

	

131	

131	

from a node n with NL x, all
occurrences of x are instantiated with
TRUE. Similarly with -ve edges and
¬x. Therefore: Clause-Sets in nodes
below n do not have literal x in any
of their clauses per definition. This
makes it impossible to produce
another edge bearing the same
variable/literal name on any branch
in any further resolution-step. Also, a
new clause in a resolution-step may
contain a maximum of 3 new literals
whose edges are not already present
in b. This makes the maximum
amount of newly added nodes in b
per step: 3.

2. Suppose f has an FBDD. Branches of
this FBDD define variable orderings
(not necessarily the same for all
branches) which can be used as
instruction guidelines by any
procedure PR instantiating
variables/literals in the 3-SAT-CNF
expressing f. The final output of PR
is then the same FBDD (with
possible isomorphic sub-graphs).
This PR may look like this:

PR:
Inputs: Clause-Set S representing
function f in 3-SAT-CNF-form, FBDD
for f
Outputs: Final Tree (not necessarily
SRT)
Steps:

1. For the currentFBDDNode
(initially the root node)
i. if currentFBDDNode is a leaf

then return leaf
ii. read the variable in the node

iii. instantiate S using this
variable, left and right.

iv. create in the resultTree two
nodes representing left and
right instantiations of S (call
them S’ and S’’ respectively)

v. call yourself recursively for
left side: PR(S’,
leftNodeOf(currentFBDDNo
de))

vi. call yourself recursively for
right side: PR(S’’,
rightNodeOf(currentFBDDN
ode))

2. return resultTree

(Q.E.D.)

Abdelwahab, N.
	

	

132	

132	

Property 8 (SRT-structure): SRTs
produced by GSPRA for s.o. and lo.o.
3-SAT-CNF Clause-Sets S of size M
have in their top-part, i.e., until all
literals of the chosen first clause C0 are
instantiated64, at most k M-sized unique
and k <M-sized not necessarily unique-
nodes, where k<=3, k = number of
literals in C0. Moreover: No SPR-
unlike65 resolution-procedure using any
variable ordering on S can produce less
than k M-sized unique-nodes and k <M-
sized not necessarily unique-nodes in
the top-part of its resolution-tree.

Proof: When a literal in a clause C is
instantiated, it creates two types of
Clause-Sets, one in which a linear
derivation of C is formed and the other
in which C becomes TRUE. The
number of Clause-Sets resulting after
the instantiation of all literals of C for
each type (including the base one) being
at most 2*k, k = breadth of C. As
prescribed in Definition 2, step 1,
GSPRA builds upon the tree shown
there which represents all such
instantiations of clause C0, which must
be the shortest. As sequential resolution
proceeds and clauses are propagated
one by one through all branches of
IRTs, the overall structure of this tree is
not altered (per definition). Instead,
sizes of its nodes are subject to change.
All non-leaf-nodes whose total number
is k, of this first tree containing C0 or
unique linear derivations of it, get new
clauses appended to their Clause-Sets
rendering them of size M in the final
SRT. Leaf-nodes marked with TRUE in
the first tree of C0 are filled stepwise
with Clause-Sets which can only

64 C0 is chosen in Preliminary Step 0,
Definition 2.
65 SPR-unlike is any procedure which does not
choose only one clause (C0) to fully instantiate
in the top-part of its resolution-tree. It allows
thus non-minimal top-parts.

possess <M clauses, since they miss at
least C0. Their number is also k<=3.
Those <M-sized nodes might not be
unique, since subsequent instantiations
of S which make C0 TRUE may result
in equivalent Clause-Sets. Fig. 12
shows a generic picture of the top of a
possible final SRT (w.l.o.g.). Note that
both blue (called: Top Head Nodes,
THNs) and red nodes (called: Top
Body Nodes, TBNs) of the figure are
considered to be in the top-part of the
overall SRT. One thing has to be
remembered: Signs of literals determine
the position (i.e., left or right) of TBNs
and THNs. In the generic case shown
here, TBN-clauses are all on the left
side because all literals are assumed
(w.l.o.g.) to be positive.

Figure 12: Top Head Nodes (THNs) and
 Top Body Nodes (TBNs)

For the second claim: Any k’-
consecutive literals picked up for
instantiation in the beginning of any
resolution-procedure will have either to
be from the same clause or from
different clauses in S. If S is M-sized
and k’ literals are chosen from the same
clause, then the procedure is said to be
SPR-like and <M-sized Clause-Sets in
both left- and right sides of
instantiations, included in the boundary
of the SRT-top, are reached in k’ steps
at least (where k’>=k, k size of C0) 66.

66 It might be the case that an SPR-like
procedure picks an initial clause different from
the shortest one picked by GSPRA.

Abdelwahab, N.
	

	

133	

133	

If on the other hand k’-consecutive
literals are chosen from different
clauses (SPR-unlike), then emptying at
least one clause will definitely take >k
steps, i.e., since C0 is the shortest, one
needs always at least k steps to empty
any clause. Thus, k M-sized unique-
nodes and k <M-sized not necessarily
unique-nodes is less than or equal to
any possible number of nodes of either
type reached in the top-part of a tree
produced by any SPR-unlike
procedures.
(Q.E.D.)

Property 9 (generality of canonical
orderings): Any ordering ∏p applied to
a node solving problem p - formalized
using an a.a. 3-SAT-CNF Clause-Set S
(in a tree generated by a procedure PR
not necessarily SPR-like) can be
converted to a canonical ordering ∏c

p
used by PR with a least-literal-rule.
Moreover: If an SRT produced by SPR-
like procedures has a minimal number
of unique-nodes with respect to all
possible canonical orderings used by
such a PR, then it is minimal for all
non-canonical orderings used by PR as
well.

Proof: Suppose ∏p ={a,i,k,h,b,c,…}
where a<i<k<h<b<c,… is an arbitrary
ordering containing instantiation
precedence of literals in S applied by
any procedure PR, then
literals/variables in S can be renamed
using a bijective function67 f: N => N in
the following way:

f={(a,a)(i,b)(k,c)(h,d)(b,e)(c,f)…}. ∏p
shall become

∏c
p={a,b,c,d,e,f,…}

which is canonical. PR can obviously
use ∏c

p with a least-literal-rule to
achieve the same results as it did with

67 This function is called in next sections a
mapping.

∏p. Suppose now SRTMin constructed
for S using GSPRA via a ∏c is minimal
for all possible canonical orderings, i.e.,
the number of nodes in SRTMin <=
number of nodes in any tree constructed
for S by PR using any canonical
orderings68. If ∏p’ is an ordering used
by PR which is not canonical such that:
Number of nodes of a tree constructed
by PR using ∏p’ < number of nodes of
SRTMin, then S can be renamed so that
∏p’ becomes ∏c

p’ as seen above and
produces a smaller SRT than SRTMin
when used by PR via a least-literal-rule
contradicting the minimalism
assumption of SRTMin for all canonical
orderings. This means that SRTMin is
minimal whether canonical orderings
are used by PR or not.
(Q.E.D.)

Property 10 (Algorithmic Equivalence
 = Syntactical Equivalence)
Let n1,n2 be nodes ∈ SRT of a Set of
a.a. 3-SAT-CNF-clauses, S1,S2 their
respective base Clause-Sets: n1 ≈ n2 iff
S1=S2.

Proof: (by induction on M, the size of
nodes)

Base-Case M=1: If n1 ≈ n2 then per
Definition 7 SRT1 of n1 is isomorphic to
SRT2 of n2. Let b1 ={{a,b,c}} be base
Clause-Set of SRT1 and b2 = {{x,y,z}}
be base Clause-Set of SRT2. We can
make b1=b2 by renaming literals in b2
(x>a,y>b,z>c) without affecting the
truth value of the Clause-Set. The other
direction is trivial69.

Induction Hypothesis: ∀n1,n2 nodes ∈
SRT, S1,S2 their respective base Clause-
Sets of size M: n1 ≈ n2 iff S1=S2.

68 Different canonical orderings can be created
using different renaming functions f.
69 The case shown here (w.l.o.g.) has only +ve
literals. The same property is valid for all other
cases as the reader may wish to verify.

Abdelwahab, N.
	

	

134	

134	

Induction Step: For size M+1:
If n1 ≈ n2 then: As per Definition 7 left-
and right sub-nodes of n1, n2 are
equivalent as seen in Fig. 13 (dashed
lines) in which rectangles represent M-
sized and ellipses M+1 sized nodes.
Applying Definition 7 recursively also
renders other M+1, M-sized nodes
equivalent (solid lines). For all
rectangular nodes the induction
hypothesis applies, i.e., their Clause-

Sets are also equivalent. This makes it
possible to apply Property 6 to the
lower, purple part of Fig. 13 thus
deducing that Clause-Sets of nodes n1’
and n2’ are equivalent, then applying
Property 6 again to the blue part to
reveal that Clause-Sets of nodes n1’’
and n2’’ are equivalent before applying
Property 6 to the top-part to finally infer
that Clause-Sets of nodes n1 and n2 are
equivalent.

Figure 13: Algorithmic Equivalence = Syntactical Equivalence

Other direction: If S1=S2, then as per
Definition 7 left- and right sub-nodes
have to be algorithmically equivalent as
well to make n1 ≈ n2. We know that left-
and right Clause-Sets are syntactically
equivalent (Property 6). For the
rectangular nodes, the induction
hypothesis can be applied. For the
elliptical nodes we go a level deeper
applying Definition 7 and Property 6
again and so on. Thus n1 ≈ n2 .

Lemma 1: SRTs of 3-SAT-CNF
Clause-Sets S - whether s.o. or lo.o. -
are sequentially-ordered.

Proof: (by induction on M, the number
of clauses is S)

Base-Case M=1: The SRT produced in
Definition 2, step 1 is sequentially-
ordered per definition where C0’, C0’’
are derivations of C0 (Fig. 14):

(Q.E.D.)

Figure 14: sequentially-ordered SRT

n1 n2

n1’ n2’

n1’’ n2’’

C0’

C0

TRUE
TRUE

a1 ¬a1

b11
¬b11

C0’’

TRUE
¬c11

FALSE
c11

Abdelwahab, N.
	

	

135	

135	

Hypothesis: For s.o. and lo.o. Sets S
of M clauses, SRT is sequentially-
ordered

In resolution-step M+1: Let S’ = S ∪
{x,y,z}70. Following cases can be
distinguished:
1. x,y,z are new literals => Then

CM+1={x,y,z} is going to be added to
all Clause-Sets in the resolution-tree
except the leafs which may be
transformed to the tree representing
CM+1 => According to the induction
hypothesis all nodes are already
sequentially-ordered, adding CM+1

preserves this order for M+1
2. x is already in S while y, z are new

=> for any general node in the SRT
for steps <=M of the form (Fig. 15):

If L<>x => then this part of the tree
(and similar ones) will look like Fig. 16
after step M+1, hence, preserving the
property:

Figure 16

If L=x => the sub-tree will look like
Fig. 17 also preserving the property:

Figure 17

70 An example permutation with only +ve
literals is used here for simplification and
(w.l.o.g.).

3. x,y already in S, while z new or x,y,z
already in S => similar to case 2, for
any node in the SRT:
a. If x=L and y, z<>L a derivation

of the new clause CM+1 is not
added to the left Clause-Set of
the node and added to the right
one (after setting x=FALSE)

b. If x<>L and y or z =L: this case
can never happen because of the
least-literal-rule

c. If x<>L and y,z <>L the new
clause CM+1 is added to both
sides

thus preserving the sequential ordering
property in all the above cases.
(Q.E.D.)

S

{…} {…}

¬L L

¬L L
S {x,y}

{…}{x,y,z} {…}{x,y,z}

¬x x
S {x,y,z}

{…} {…}{y,z}

Figure 15

Abdelwahab, N.
	

	

136	

136	

Illustration of Lemma 1 for sample case (2-SAT, M=3, +ve literals only):
Let S be {{a,b},{c,d},{e,f}}={C1,C2,C3}:

Figure 18: canonical SRT for S

Note that all nodes (except the leafs) are either of the form {C1,C2,C3} or {C2,C3} or
{C3}. Trying to equalize any literals without breaching the s.o. or lo.o. property of S71
(for example a=c=e or a=c only, but not a=f) will yield all the resulting tree(s)
sequentially-ordered. Fig. 19 shows the above tree if a=c and d=e.

71 Recall that the main difference between s.o. and lo.o. Sets is the fact that Clause-Sets (other than the
Base-Set) may be l.o.u. rather than l.o. While clauses in a l.o.u. Set may not be sorted as required by
Definition 1 b), they do keep their original clause sequence, which is relevant here, intact.

b

d

{b}{c,d}{e,f}

{a, b}{c,d}{e,f}

{c,d}{e,f}
{c,d}{e,f} FALSE

a ¬a

¬b
c ¬c

{d}{e,f}

{e,f} FALSE
¬d

e

TRUE
{f}

¬e

FALSE

¬f f

TRUE

{e,f}

Abdelwahab, N.
	

	

137	

137	

Figure 19

Illustration of Lemma 1 for sample Case (2-SAT, M=3, +ve/-ve literals):
The below tree (Fig. 20) shows for a sample Base-Case of 2-SAT that a sequential order of clauses is preserved. The
least-literal/head-clause-rule is seen not to be affected neither by negation nor by breadth of clauses.

Figure 20

Corollary 1: Suppose Ci, Cj are clauses
of a s.o. Set S of a 3-SAT-CNF-
problem, where i<j, then some literals
of Ci must appear in branches of the
SRT containing Cj and get instantiated
before literals of Cj..

Proof: Two evident properties of
GSPRA should be emphasized first:

1. Any clause C or its derivation C’ is
resolved against all branches of the
IRT constructed in intermediate steps
(c.f. Definition 2 of GSPRA).

2. If C or C’ disappear from Clause-
Sets of resolution-tree nodes, this is
because some of the literals got
instantiated either with TRUE or

FALSE (according to signs of those
literals) and made the overall truth
value of C or C’ =TRUE.

Knowing that, there are following
possibilities for any Clause-Set S’ of
any node in the resolution-tree of S with
respect to Ci, Cj: Either Ci, Cj both
appear in S’ in which case (as per
Lemma 1) they are already sequentially-
ordered, i.e., Ci literals appear before Cj
ones and accordingly get instantiated in
the same sequence in branches, or only
Cj appears in which case (because of
properties 1,2 above) the only reason
for the disappearance of Ci would be
that some of its literals got instantiated
with TRUE or FALSE before S’ or only

c

{¬a,b}{c,¬d}{¬e,¬f}

{b}{c,¬d}{¬e,¬f}
a

¬a

b

{c,¬d}{¬e,¬f}

{¬e,¬f}

{¬d}{¬e,¬f}
¬c

FALSE

FALSE

¬b

FALSE

¬b

{b}{d}{d,f}

{a,b}{a,d}{d,f}

a ¬a

b

¬d

FALSE

d

TRUE

{d}{d,f} ¬d

TRUE

{d,f}

d

{f}

TRUE FALSE
f

¬f

Abdelwahab, N.
	

	

138	

138	

Figure 21

Figure 22

While the same tree for the ordinary 2-SAT case may look like Fig. 22 for a sample
permutation:

{… {a,X} ..{b,Y} ..}

{{a,X} ..{b,Y} ..}

a
~ a

{..{b,Y} ..}

{{X} ..{b,Y} ..}

~x x

{… {¬a,X} ..{b,Y} ..}

{{¬a,X} ..{b,Y} ..}

{{X} ..{b,Y} ..}
 a ~ a

x
~x

{..{b,Y} ..}

Ci appears meaning (also because of
properties 1,2 above) that a literal of Cj
got instantiated before any literal in Ci
making the overall value of Cj TRUE
which cannot happen, because of the
least-literal-rule and the fact that all
Clause-Sets are l.o.72 or Ci, Cj both

72 Remember that as per l.o. condition for any
parent-node of S’: ∀i,j indices of clauses: if i<j
then head-literal of Cj >= head-literal of Ci
which means (because of the least-literal-rule)
that no head-literal of a Cj can be instantiated
before a head-literal of a Ci.

don’t appear in S’, but in parent-nodes
in the SRT. In that case the same
argumentation as in the previous three
cases applies.
(Q.E.D.)

Illustrations of Corollary 1 (Fig. 21):
Base Clause-Sets of the form {… {a,X}
..{b,Y} ..} (for +ve, monotone 2-SAT)
where a<b can have SRTs of the form:

Abdelwahab, N.
	

	

139	

139	

Note that all branches in both figures
(Fig. 21&22) containing {b,Y} also
contain instantiations of a only or X
only or both.

Lemma 2: Suppose S is an s.o. Set of a
3-SAT-CNF-problem. The following
are properties of its SRT:

a) For any branch b: If i,j are edges
corresponding to literal
instantiations in b, i<j then i
appears before j in that branch.

b) For all common-nodes [q] and
nodes [X],[Y],[Z], etc. (c.f. Fig. 2
in Definition 5), NL q> NLs x,y,z,
etc.

c) HCNs as well as TCNs exist even
for 2-SAT.

d) Clauses belonging to the same
block Bx, x block literal, can only
be scattered between mutually
exclusive branches if Bx is at least
partially embedded73 in another
parent block.

e) A CN [q] formed within a block Bx
through +ve as well as -ve edge- or
branch-literals x is called: Double-
Sided CN from the perspective of x,
DSCNx. Such an x is called
distinguished literal for [q]. A CN
[q] formed within a block Bx
through only +ve or only -ve edge-
or branch-literals x is called:
Single-Sided CN from the
perspective of x, SSCNx, x is called
non-distinguished literal for [q]. If
for a CN [q] there is no
distinguished literal x such that the
CN is DSCNx, then [q] is called
simply SSCN. If a non-
distinguished literal x for a CN [q]
formed in steps <k is used to
augment the size of [q] in step k,

73 Defined in the proof below.

i.e., x is instantiated in a clause
added to the clauses of [q] in k,
then x is called: CN-Augmenting
Literal (CNAL) for [q]. For all CNs
[q] in an SRT it is true that:
i. DSCNx-nodes which are not

SSCNy for any y can only be
augmented in size when
supported through parents in
block Bx

ii. SSCNs may split74, but only
before augmented to sizes>1.

iii. If x is a CNAL for [q] in step k
then it cannot be used to split it
in any further step >k.

iv. If the size of [q] is augmented
using any CNAL in step k to
become >1, then it cannot be
split in steps >k.

f) For tCNs [q] in an SRT: [q] can be
augmented to sizes >1 using a
distinguished literal x within a
symmetric block Bx. It may :

1- Never split after being
formed if Bx remains
symmetrical or

2- Avoided altogether when
relaxing the l.o.
condition for symmetric
or dissymmetric blocks
to a special l.o.u. one
called l.o.s. 75

3- Imposing l.o.s. or l.o.
conditions on symmetric
or dissymmetric blocks
generates the same SRT.

74 We are using here the loosely defined
formulation of a "split" discussed in the
introduction, the exact formulation being
subject of Section C.
75 Definitions of symmetric and dissymmetric
blocks as well as the l.o.s. condition is shown in
the proof below.

Abdelwahab, N.
	

	

140	

140	

¬x

¬a

….

{¬x,¬y}{x,y}……

….

 {¬x,y}{x,¬y}…
…

a

¬x

x

….

…

¬y

….

y

Proof:
a) Suppose i<j: Because of the least-

literal-rule the only way literal i can
be instantiated after j in a branch b
would be either that j comes before
i in the same clause thus breaching
Condition a) in Definition 1 or
clauses containing i are resolved
after clauses containing j in b (as
per Definition 2 of GSPRA) which
means i is a new variable from the
perspective of clauses containing j.
But in that latter case i should have
been >j as per Condition 1 c).

b) This follows immediately from a)

(recall that node [q] has two edges
coming out from it marked q and
¬q where those edges come after
x,y,z,.. edges).

c) If a node is HCN as per Definition
5, then Fig. 23 shows this for the
monotone case in the following
example (where a=0, b=2,
[N]={3,4}):

Figure 23: HCN-node

The below tree in Fig. 24 demonstrates the existence of TCNs in ordinary 2-SAT-SRTs
which are s.o. (lo.o. Sets are similar).

Figure 24: TCN-node

d) Suppose S={{a,¬x,¬y}{b,¬x,y}{c,x,¬y}{x,y,z}}, a<b<c<x<y<z, which is
obviously l.o. The question is: Can we scatter clauses of the block
Bx={{ x, y}{ x,y}{x, y}{x,y,z}} between mutually exclusive branches of an
SRT so that it looks for example like:

Figure 25

1

¬0

TRUE

{1}{2}{3,4}

{0,1}{0,2}{3,4}

 {3,4}
{2}{3,4}

FALSE

0

¬1

3
¬3 {4}

TRUE
FALSE 4

¬2

FALSE

¬4

2

¬0

{¬3}

{1}{¬2,¬3}

{0,1}{¬0,2}{¬2,¬3}

 (2){¬2,¬3} FALSE

0

¬1

2

{¬2,¬3}

FALSE

2

TRUE

¬2

1

¬2

Abdelwahab, N.
	

	

141	

141	

where different members of Bx can be
found in different nodes mutually
excluding each other?
The answer is that this is only possible
if a=b=c, i.e., if
S={{¬a,¬x,¬y}{a,¬x,y}{¬a,x,¬ }{x,y,
z}} for example. The obvious reason for
that being the fact that exclusivity of
branches in any SRT relates to different
instantiations of one and the same
literal. To be able to disperse at least
some members of Bx, a common literal
in a parent-set needs to be instantiated
in two mutually exclusive ways. Note

that the clause {x, y, z} is included in all
branches, since its leading literal is the
block literal of Bx (not Ba) and x>a. Bx
of the form seen here is called partially
embedded.
e) Suppose a DSCNx [q] which is not

an SSCNy for any y is formed
within a block Bx through
instantiations of variables such that
two branches of the SRT contain
edges marked with x (¬x
respectively) connect to the CN as
in Fig. 26 (left):

Figure 26: DSCNx [q] formed within block Bx. SSCN augmenting.

Obviously, any clause C attempting
to augment the size of [q] cannot
use for this the distinguished literal
x, because otherwise a split would
occur as two different derivations
of C must result from any
instantiation efforts. Thus, the only
way to increase the size of [q] in
that case is by adding clauses from
a block By different from Bx to the
parents of [q] before propagating
them down to [q], y>x. This is
precisely what is done when [q] is
supported (c.f. Definition 5, Section
A).
On the other hand: Suppose [q] is
an SSCN (SSCNx and SSCNy as
well Fig. 26 right where x<y). The
question is: Can this node split after
its formation and before a clause C
attempts to augment it? This is
theoretically possible if a clause
containing literal y is used. Clauses

containing literal x may only cause
such a split if x doesn’t occur
before y in that branch. Now
suppose its size is to be augmented
to become >1 using clause C, then:
Only one derivation of C (in Fig.
26: C’) can be propagated down to
[q] from all possible directions. C’
must be the result of instantiating
none, one, or more than one literals
of C in the same way throughout all
branches. Obviously y in Fig. 26
cannot be CNAL, since it is not
instantiated in any other branches
containing x and can thus cause a
split as mentioned before. This
leaves x as the only possible CNAL
in the constellation illustrated in
Fig. 26. An edge marked x must
exist in the branch containing y
prior to edge y (in the dashed lines
region) otherwise C’ cannot be the
same for all edges. After [q] is

{ }

 (x){ }

x ¬x

 {x,…}..

x

{x,…}..+C

{ }+C’

 (…){ }+C

x

{..}..+C

y

Abdelwahab, N.
	

	

142	

142	

augmented in size with C’ in step k
(through CNAL x): Any clause CC
attempting in a further step to split
[q]+C’ through instantiations of x
will have no effect on this CN,
since all branches contain an edge
marked x. Meaning: If CC uses a
+ve literal x, it’s value shall become
TRUE and neither CC nor any of
its derivations will be propagated
down to [q]+C’. If on the other
hand, CC uses a -ve literal x, one
and the same derivation CC’ shall
be propagated through all branches
and the size of [q]+C’ is increased
again. Thus, CC cannot split [q]+C’
using CNAL x in any step >k. What
about y? Since [q] was augmented,
C must have been free of y. Now if
CC contains y, this would mean a
parent Clause Set of the form
{..y..}{<no y>}{..y..} in some node
which is not l.o. 76
Putting all this together: GSPRA’s
generic way of augmenting the size
of a CN [q] in step k using a clause
C is depicted in following Fig. 27
where a<b<x. Assuming [q] is
augmented in size through CNALs
(otherwise it can only be
augmented in size when supported
as seen above or using
distinguished literals before a tCN
is created as seen in the next point).
This means C belongs to either Bx,
Ba, or Bb (head-literal of C and
potential CNAL being: x or a or b
respectively). Instantiation of one
of those literals must result in one
single derivation C’’ propagated
through all branches increasing the

76 Clause-Sets of the form: {... {y,...},{<no
literal y>},{.,y,..} ...} are not l.o. for any y,
because in l.o. Sets heads of clauses (at least)
must be sorted in ascending order. This form
means that the head of {<no literal y>} can only
be >y contradicting the occurrence of y again in
the last clause in any position.

size of [q] as before. Obviously,
literal x cannot be CNAL as just
demonstrated, Literal b cannot be
used either since a is an edge-literal
of [q] and hence b is not being
instantiated at all on that branch
contradicting what is happening on
the branch containing N4+C’’, i.e.,
those two branches cannot produce
the same derivation if a<b. This
leaves literal a only as CNAL. For
a to be CNAL the newly added
clause C must be equal to
{¬a} C’’ where literals b, x are
not ∈ C’’.77 [q] must be SSCNa
and all dashed lines reaching from
the Base-Node to N2, N3,N4 must
have edges marked with a similar
to the branch of N1. Otherwise the
same derivation C’’ cannot be
propagated from those directions.
Let us now try to split the
augmented node {q}+C’’. Any new
clauses from Bx or Bb attempting
this will breach the l.o. condition in
nodes N2,N3 and N4, since they
already contain C’’ which is free
from both b,x.
A new clause from Ba cannot do
this, since a is CNAL. Thus [q]+C’’
cannot be split in any step >k.

77 C cannot be {a} C’’, because C would then
get the value TRUE when instantiated through
edge a and no derivation would be passed down
to [q] from that direction. Also: C‘‘ has to be the
same derivation propagated from all branches to
[q]. Therefore, it cannot contain neither b nor x
whose existence would cause different
derivations through N1,N4 and N2,N3
respectively.

Abdelwahab, N.
	

	

143	

143	

Figure 28

…
.

¬y

a x

¬

Figure 27: Generic way of augmenting a CN

Here is yet another argument
showing the same: Suppose a CN
[q] is augmented using any CNAL
a in step k, then, a cannot be used
to split [q] in any step >k as seen
above. It is then sufficient to show
that [q] cannot be split in steps >k
neither using any distinguished
literal x nor any non-distinguished
literal y which is not a CNAL. For a
distinguished x: [q] could have only
been augmented in size in k through
parents who already have clauses
containing a or its negation from a
block By, y>x otherwise a split
would have occurred. Any attempt,
then, to split [q] in steps >k using
clauses containing x assumes
therefore parent-nodes containing
Clause-Sets of the form: BxBy{..x..}
which are not l.o.
For a non-distinguished literal y
which is not CNAL: [q] could not
have been augmented in step k with
any clause containing y or its
negation (otherwise it would have
been a CNAL similar to a if all
branches agree on its instantiation
or a split would have occurred if
they disagree). If this is the case
then any attempt to spilt [q] using y
in steps >k must assume some
parent Clause-Sets of the form:
By<no y>{..y..} (c.f. footnote 76)
which are not l.o. either.

f - For tCNs: A block Bx is called
Symmetric Block (SB) if –ve
and/or +ve instantiations of block
literal x result in the same Clause
Set. It is called Dissymmetric
Block (DB) if –ve and/or +ve
instantiations of block literal x
result in Sets S1, S2 respectively
and either S1 ⊆ S2 or S2 ⊆ S1. A
tCN is obviously per Definition
(see linear expansion Property 2
above) created in an SB, since two
nodes can only be merged into one
if their respective Clause Sets are
equivalent with respect to a given
instantiation. The following
example illustrates a case where
such a tCN is formed and then split,
because Ba became dissymmetrical

(Fig. 28).

b

¬….

{ }+C’’

N2+C’’

Base-Node +C

 N1+C

N4+C’’ N3+C’’

Abdelwahab, N.
	

	

144	

144	

Note that this split could only occur
because literal a was distinguished for
tCN {b,c}. If clauses are sorted such
that the Base-Set becomes {¬a,b,c}
{¬a,d,e} {a,b,c}, this situation is
prevented like in Fig. 29:

Note also that if the Clause Set is sorted
the other way round:
{{a,b,c}{¬a,b,c}{¬a,d,e}} the split still
occurs, i.e. to prevent this type of splits
altogether, sorting must take into
account the number of clauses
containing –ve and +ve instances of the
leading literal and prioritize the
instantiations with the most clauses. We
call this additional condition on sorting:
l.o.s (linearly ordered, but stretched). Is
imposing l.o.s. conditions on SBs and
DBs really necessary, i.e., how
expensive is it to allow this type of
trivial splits to occur? Obviously, {b,c}
is copied once. This becomes only

expensive if more clauses are added to
the tCN before a split occurs. One such
situation can happen with the Clause
Set:
S={{¬a,b,c}{¬a,d,e}{a,b,c}{a,d,e}}.
Here the tCN is {{b,c}{d,e}} and of
size 2. In that case tCN {b,c} is
augmented in size using the
distinguished literal a before the tCN is
formed. Any further clause of the form:
{a,..} or {¬a,..} causes therefore a split
of a node of size 2 which, if admitted in
its general form, may create a bigger
number of new nodes in any step78. It
seems at first sight that imposing l.o.s.
on SBs and/or DBs is a must. Such an
undertaking comes with the additional
complication that sometimes l.o. and
l.o.s. conditions are contradictory, i.e.
some Clause Sets may be either l.o. or
l.o.s, but not both79. Fortunately tCNs
are only formed and split in SBs and
DBs respectively. This means that
applying the least literal rule to the
whole block will result in both cases in
the same Clause Sets in children nodes
whether the block is l.o.s. or l.o., since
the difference between those two
conditions lies merely in the positions
taken by negative and/or positive
occurrences of the least literal in
respective clauses. This difference has
no effect on the overall instantiation
effort of the least literal in the base
Clause Set. Such a property makes
SRTs - resulting from imposing any of
those two conditions on the whole block
- equivalent 80. Counting the number of

78 In this paper the effect of allowing splits of
CNs of rank <3 and sizes >1 is not investigated
except for the tCN case on hand here.
79 Such a case is S={{a,b,c}{¬a,b,d}{a,c,e}} as
the reader may wish to verify.
80 May be formally shown using induction on
the length of blocks, realizing that top-parts of
SRTs applying any one of those conditions are
always equivalent. This is not done here to
avoid unnecessary length.

Figure 29

Abdelwahab, N.
	

	

145	

145	

unique nodes resulting from imposing
l.o. conditions being subject of section
E, it remains here to ask: What if SBs or
DBs are scattered between different
nodes? How can this influence the
equivalence between l.o. and l.o.s.
conditions for SBs and DBs ? As seen
in point d) of this lemma: Blocks can
only be scattered when they are at least
partially embedded in other blocks. This
means that scattered SBs or DBs always
have common base nodes like in the
below constellation (Fig. 30):

As long as all nodes are guaranteed to
be l.o. in such an SRT, no node shall be
containing clauses of the form:
{{x,..}{y,..}{x,..}} for some x and y.
This means that scattered fragments of
block Ba have, with respect to the tCN,
always priority on other blocks within
the same node as seen in the figure.
Here again: As the difference between
l.o. and l.o.s. conditions within those
fragments is related only to positions
and priorities of clauses containing the
signed/unsigned least literal a, the order
of clauses within such fragments and
hence within the overall, scattered Ba is
irrelevant for any instantiation effort
done using the least literal rule (here
applied on a) either during the
formation of this tCN or during its split.
L.o.s and l.o. blocks produce therefore
even when they are scattered the same
SRTs.
(Q.E.D.)

In furtherance we show detailed sample
cases of size augmentation trials within
parent-instantiation blocks for the
purpose of clarification of findings of
Lemma 2:

Case 1: All parent-sets belong to the
same block (in the example above of
Fig. 28). For tCN {b,c} try to increase
its size by adding clauses to
S={{¬a,b,c}{a,b,c}}. If we add a clause
of the same block Ba such as
{¬a,¬b,c},{a,¬b,c},{¬a,d,e} or {a,d,e} a
situation like the above occurs and
{b,c} is always split81. In all those cases
Ba becomes dissymmetrical.
In the previous example, S only had one
parent-node containing the block Ba of
the tCN {b,c}. Here, a situation where
such a tCN has parents from different
nodes in different branches although
one and the same block (Bb) is being
instantiated by direct-parents (Fig. 31).
A split is occurring for tCN {c}.

81 The reader is encouraged to check this by
him/herself.

Figure 30

{a,b,c}{a,d,e}… {¬a,b,c}{¬a,d,e}..

{b,c}{d,e}…

¬a a

Figure 31

Abdelwahab, N.
	

	

146	

146	

Can we make the size of {c} bigger
than 1 in any step before a split occurs
afterwards? The answer is: No! If we
use clauses of Ba like {a,b,d} or
{¬a,c,d} then {c} is split, because Bb
loses its symmetry. If we take clauses
like {b,c,d}, {¬b,¬c,d} or {¬b,c,d} from
block Bb similarly happens. For all
clauses from Bx, x>b, like {c,d,e} or
{¬c,d,e}, this tCN will be supported and
cannot split in any further step.
Case 2: Parent-sets belong to different
blocks. One interesting constellation is
seen in below Fig. 32 where block By
has only one edge (either +ve or -ve)
going to the tCN82.

Figure 32

Let us try to increase the size of [q]
through clauses from block By, i.e.,
attempting to use y as CNAL. A clause
C attempting this will have two
derivations, one in which y is not
instantiated and one in which it is. This
makes [q] split. Thus, for this case as
well, [q] cannot be increased in size
before a split occurs. Another practical
example : Set S={{a,¬b,d}{b,c,d}}. The
following tree (Fig. 33) contains two
tCNs {c,d} and {d}:

82 Note that if By is allowed to have two edges
of opposite signs linked to [q], making [q] a
DSCNy, any attempt to augment the size of [q]
using By shall clearly result in a split as for Bx.

Now let's try to increase the size of tCN
{c,d} with any clause from block Bb or
Bc with an example (Fig. 34) for a
clause from Bb: {b,e}83

Now we try to split {{c,d}{e}}. This
cannot be done using any Ba-clause
(because of the l.o. condition) or Bb-
clause, because b is CNAL. What about
the tCN {d}? If we attempt to augment
its size using clauses from Bb like {b,e}
(the one we used above) it will be split
as just seen before. Let us try {c,e}
from Bc. In that case we have the
following picture (Fig. 35) where {d} is

83 The reader is encouraged to try other
examples of the mentioned blocks.

Figure 33

Figure 34

Abdelwahab, N.
	

	

147	

147	

Figure 35

also split and the split results in a
breach of the l.o. condition as well84.

84 The reader is encouraged to try other
possibilities from blocks Bb and Bc (like {¬b,e}
or {¬c,e} for example).

Remark 1: (TCNs occur in s.o. Sets of
monotone, +ve 2-SAT when the least-
literal/head-clause-rule of GSPRA is
dropped).
The above assumes the application of
GSPRA with a least-literal/head-clause-
rule. Fig. 36 below shows two
examples, the resolution-tree for the
same Set ({0,1}{1,2}{2,3}), i.e, for the
monotone +ve 2-SAT case when the
least-literal/head-clause-rule is dropped
(left) and when it is applied (right).

Figure 36: The left tree shows a TCN appearing in case the clauses {1,2}{2,3} are instantiated along
the literal 2 common to both clauses (instead of 1, the least-literal, as the rule instructs). In the right
tree an HCN is formed instead ({2,3}).

Abdelwahab, N.
	

	

148	

148	

{X,a} {X,b} {a,c}

x ¬x

{b} {a,c}

{c}

¬a

a

{c}

{X,c}

{a,c}

{b} {c}

¬a

FALSE b ¬b

{a}

Remark 2: (TCNs in resolution-trees of lo.o. Sets for monotone +ve 2-SAT Type 1
TCN)
Suppose S is an lo.o. Set, i.e., at least for some Clause-Set S’ in a node of the SRT, S’ is
l.o.u., then the following form of a TCN exists:

Figure 37: Type 1 TCN

Remark 3: (TCNs in resolution-trees of
lo.o. Sets for monotone +ve 2-SAT
Type 2 TCN).
In the previous example for a TCN,
literals written on edges leading to the
TCN (called: TCN edge-literals) were
identical.

The constellation in Fig. 38 below
shows an example where those literals
are different. Literals on edges of
branches leading to a TCN are called
branch-literals of the TCN. Every edge-
literal is a branch-literal, but not vice
versa.

1 ~
2

{X,a} {X,t} {a,t}

x ¬x

{a} {t} {a,t}

{t} ¬a

a

{a, t}

Figure 38: Branch-literals of the TCN where b is an edge-literal for node {c}
 while a and ¬X are branch-literals

Abdelwahab, N.
	

	

149	

149	

C) STUDY OF SPLIT CONDITIONS IN
 SRTs

Definition 8: An SRT produced by
GSPRA is said to possess a split if:
Either node n containing Clause-Set S
constructed in step k is duplicated one
or more times in steps >k together with
all or parts of its sub-nodes, the cause of
this duplication being that S is resolved
with a clause whose least-literal is new
and has an index < all or any indices of
head-literals in S (called: N-splits).
Or a CN [q] constructed in step k
and/or any of its sub-nodes are
duplicated with variations85 one or
more times in steps >k (called: CN-
splits).
As examples of N-splits have been
discussed in detail in Section I, we
focus on CN-splits in furtherance:

85 Different variations of the duplicated CN
correspond to the resolution of different
derivations of a newly resolved clause C with
the CN.

C-1 Example for a CN-split of a
type 1 TCN node:
The reason why different CN-splits
occur is generally that different
derivations of C get resolved with a CN
through different branches of the SRT
linked to this CN as mentioned before.
New nodes [q]'=[q]+C' are formed
where C' is a possible derivation.
[q'] is called: split-node.
This situation is illustrated in the below
Fig. 39.
Split-nodes are causes of exponential
behavior of GSPRA when it is applied
to a.a. or l.o.u. Clause-Sets.

X Y Z ……..

Q

Base-Node

C (resolved in step >k)

C' C'' C'''

Figure 39

Abdelwahab, N.
	

	

150	

150	

Figure 40: A concrete example for the ordinary 2-SAT case.

C-2: CN-splits in s.o. Sets
Important properties of CNs in s.o. Sets
are shown in the following lemma.

Lemma 3 (a): HCNs in SRTs of a 3-
SAT-CNF s.o. Clause-Set S generated
by GSPRA cannot be split.

Proof: Suppose [q] is such an HCN
formed in step k, i.e., [q] is head-literal
of a clause Ci of S which is the first
clause in [q], then according to Lemma
2 b), all parent-nodes in the branches
for which [q] is a sink, [X],[Y],[Z] have
NL q> NLs x,y,z (edge-literals). q is
also >s,t,v.., where s,t,v.. <x,y,z,.. and
s,t,v,... are branch-literals which are not
edge-literals. To be able to split [q] in
any step >k, a new clause C causing
such a split needs to traverse branches
leading to [q] and contain literals from
the Set {x,y,z,..., s,t,v,...} making the
overall value of C =TRUE according to
respective signs. This cannot be the
case, because Ci ={q,..} ∈ S has
already been processed in all parent-sets
to form the HCN [q] and parent-sets are
all l.o., i.e., i,j, indices of clauses: if i<j
then head-literal of Cj >= head-literal of
Ci, because of the sorting condition (c.f.
Definition 1 b), Section A). Any head-
literal of C must therefore be >=q.
(Q.E.D.)

Lemma 3 (b): CNs of rank 3 in SRTs
of 3-SAT-CNF s.o. Clause-Sets cannot
be split either.

Proof: Suppose [q] formed in step k is
any CN including in its Clause-Set a
clause {x,y,z}. To be able to split [q] in
any step >k, a new clause C causing
such a split needs to traverse branches
leading to [q] and contain literals from a
Set of branch- or edge-literals leading to
[q] which are all <x making the overall
value of C =TRUE according to
respective signs. This cannot be the case
because of the l.o. condition imposed on
all parent-nodes as seen in 3(a) which
requires the head of C to be >=x.
(Q.E.D.)

Lemma 3 (c): In any resolution-step:
SRTs of 3-SAT-CNF s.o. Clause-Sets
possess at most CN-splits of size 186 or
trivial Block-Splits (BS). BS relate to
tCNs and can be avoided altogether.
The maximum number of size 1 splits
possible for each CN is RCC3-SAT.

Proof: We have just shown that no
splits for rank 3 nodes can exist in s.o.
SRTs. For nodes of rank<3: Suppose [q]
is such an arbitrary CN produced in
steps <k. According to the least-literal-
rule: To split [q] in steps >=k, the new

86 We call splits of size 1 nodes : Size 1 splits.

{2!,5}

{2!,5}

{5}

Abdelwahab, N.
	

	

151	

151	

clause(s) causing the split must possess
a head-literal which is equivalent to
some least-literal (= edge- or branch-
literal) instantiated in a parent-node
prior or during the creation of [q].
Because of the l.o. condition: This
leaves out supporting parents as they
already started (per definition) different
blocks than the ones which they were
instantiating when [q] was created.
Direct-parents are also excluded, since
they cannot admit any new clause with
a head-literal <q87. A split of a rank<3
node in any step >=k can thus only
occur if the new clause belongs to the
same block as the one some or all of its
parents are still instantiating.
In such a case : DSCNs and SSCNs
may produce size 1 splits before their
sizes are augmented as seen in Lemma
2 and its subsequent examples. As per
Lemma 2 also: If a new clause C of a
parent block succeeds in augmenting
the size of [q] to become >1 using any
non-distinguished literal (=CNAL) in
step k, [q] will not be able to split in any
further steps >k (Lemma 2-e). On the
other hand, trying to augment the size
of [q] using distinguished literals for
DSCNs can be done before the
formation of [q]. [q] is, then, a tCN
formed in step k, but augmented in size
in steps <k. Such nodes may - as per
Lemma 2-f - be avoided altogether
using l.o.s. conditions on SBs and/or
DBs.
If size 1 splits exist in any step k, then
one copy of a size 1 CN built in steps
<k is needed in the worst case. What
happens if the CN is a sink of many
nodes, not just two as in the examples
above? Every derivation of a newly
resolved clause may cause a different
split of the CN. As the number of
possible derivations GSPRA produces
for newly resolved clauses is always

87 c.f. Definition 5 in Section A

RCC3-SAT88, only RCC3-SAT copies of a
size 1 CN is produced in any step in the
worst case89.
(Q.E.D.)

Lemma 3 (d): All IRTs of a 3-SAT-
CNF Clause-Set S are free of non-trivial
splits (also called: Big Splits, BigSps)90
iff ∃3-SAT-CNF Clause-Set S’:S’ is
s.o., S=S’.

Proof: If S=S’ is an s.o. 3-SAT-CNF
Clause-Set, then all Clause-Sets formed
during resolution must be l.o. per
Definition 4. N-splits cannot occur in
any IRT, because otherwise (per
Definition 8) there must exist a clause C
resolved with a Clause-Set Sn of some
node n of an IRT whose least-literal is
new and has an index < all or any
indices of head-literals of clauses in Sn
so that Sn C contradicts the l.o.
condition imposed. For rank 3 CN-
splits: Lemma 3(a) and (b) above show
that any IRT of S is free of them.
Lemma 3(c) just showed that no splits
of sizes >1 exist as well.
Other way around: Consider IRTs of a
3-SAT-CNF Clause-Set S which don’t
possess BigSps. This means that neither
Condition b) nor c) of Definition 1 were
breached in course of the resolution of
Clause-Sets forming those IRTs (their
breach causes N- and rank 3 CN-splits
respectively), i.e., all Clause-Sets
formed in subsequent IRTs were l.o.
which means that (including the final
one) all IRTs were s.o. Put S’=Base
Clause-Set of the final SRT.
(Q.E.D.)

88 Because the number of possible permutations
of a 3-SAT clause is constant (RCC3-SAT).
89 This observation is important and shall be
used in Section E when properties of GSPRA+
are discussed and the maximum number of
nodes produced in each step is calculated.
90 BigSps include therefore : Both N- as well as
rank 3 CN-splits in addition to any splits of
sizes >1

Abdelwahab, N.
	

	

152	

152	

Lemma 3’s main statement is that
GSPRA - when working with 3-SAT-
CNF s.o. Sets - doesn’t copy any sub-
tree solving a problem of the same order
of magnitude as the original one. As
seen in above illustrations of CN-splits
in a.a. Sets, this was the reason for
doubling sizes of IRTs during
resolution-runs. It can be shown that for
lo.o. Sets such an exponential behavior
still exists91. Moreover, splits which are
still possible in s.o. Sets are of trivial
nature, i.e., not costing more than a
constant amount of copies of size 1 CNs
(in each step) in the worst case.
Fig. 41-a resumes what has been
discussed in Sections II-B and II-C for
a.a., lo.o. and s.o. Sets while Fig. 41-b
shows findings of Lemmas 2 and 3
related to splits of CN types :

91 Take the case of l.o. Set S={{0,1,2}{0,3,4}}
when resolved with {2,3,5} for example.

Abdelwahab, N.
	

	

153	

153	

Figure 41-a

Splits are of
size =1

Steps > k

CNs

SSCNs DSCNs

Rank 3
Step k

Split after formation
Step k

Rank <3

Augmented to
size>1 using rank 3

clauses
Step k

Cannot split
in

Steps >k

Augmented to size >1
using clauses from

parent-blocks

Augmented to size >1
using clauses not from

parent-blocks
Step k

CN-supported

Using distinguished
literals (only DSCN)

Step k

Using non-distinguished
literals
Step k

Using CNALs

Before
DSCN

formation
apply l.o.s.
l.o.s.=l.o.

Figure 41-b

Abdelwahab, N.
	

	

154	

154	

D) CONVERTING A.A. 3-SAT-
CNF CLAUSE-SETS TO S.O. AND
LO.O. SETS

Above lemmas were concerned with
s.o. Clause-Sets which are generally not
present as such. Can we convert
arbitrary Sets to s.o. or lo.o. ones? To
answer this question we need to
investigate how to convert a.a. Clause-
Sets92 to l.o.u. and l.o. ones (c.f.
Definition 1).

Definition 9: The Clauses Renaming
Algorithm (CRA) is a procedure which
takes an a.a. Clause-Set S as input,
renames its literals yielding a new S'
(equivalent to S93) as output which is
guaranteed to be l.o.u. This procedure
consists of the following steps:

1. Index clauses in S (starting with 0)
in ascending order.

2. For each clause Ci:
a) Arrange literals in ascending

order within Ci so that literals
which appear more often in
other clauses come before those
which appear less often or which
only appear in Ci. This condition
shall hereafter be called:
Renaming Precedence Condition
(RPC).

b) For all literals, one by one,
arranged in step a) do the
following: For any literal in the
clause not having already a row,
create a new row and write
column values TRUE or FALSE
according to whether the literal
appears in the corresponding

92 Converting an arbitrary Clause-Set to an
almost arbitrary one (a.a.) being a trivial
exercise needing only sorting literals inside each
clause in ascending order and taking care that
clauses have unique occurrences.
93 here: Logical, not Syntactical Equivalence.

clause or not. The matrix
resulting from this step is called
Connection Matrix of S. Rows
in this matrix represent
variable/literal names/indices
while columns represent clauses.

Example: If S = {{0,5} {0,2} {1,3}
{1,4} {2,3}}, then the Connection
Matrix of S is:

 C0 C1 C2 C3 C4
0 True True False False False
5 True False False False False
2 False True False False True
1 False False True True False
3 False False True False True
4 False False False True False

3. Rename all variables in the

Connection Matrix in ascending
order. The matrix in the example
thus becomes:

 C0 C1 C2 C3 C4
0 True True False False False
1 True False False False False
2 False True False False True
3 False False True True False
4 False False True False True
5 False False False True False

4. Reconstruct the clauses again using
the new variable names. This
reconstruction may be done by
simply substituting each literal in
the original Clause-Set with its new
literal name/index.

The new clause list for the above reads
S: S' = {{0,1}{0,2}{3,4}{3,5}{2,4}}.
Note that S' is l.o.u. Note also that if we
would want to convert S' to a l.o. Set by
sorting clauses via their least-literals (as
required by Condition b) in Definition
1) we would get: S'' = {{0,1} {0,2}
{2,4} {3,4} {3,5}} which is not
fulfilling Condition c) because of literal
3 (i.e., S'' is neither l.o. nor even l.o.u.).

Abdelwahab, N.
	

	

155	

155	

To convert an a.a. Clause-Set to a l.o.
Clause-Set, an extension to CRA is
needed, introduced hereafter with some
definitions:

Definition 10: Mapping: N => N is a
bijective function giving a literal index
in a Clause-Set its new name/index after
a renaming operation using CRA. If
each literal index is given itself, the
function is called trivial Mapping
(tMapping). If a subset of literal indices
is mapped to itself, this subset is called
a Stable-Set. If all literal indices of a
clause are members of a Stable-Set, it is
called stable clause. If all clauses of a
Clause-Set are stable, the Set itself is
called Stable-Clause-Set. The function
Mapping#: <Clause-Sets, Mappings> =>
Clause-Sets applies a certain mapping
to a Clause-Set S changing the
names/indices of all literals/indices in
this Clause-Set to the new
names/indices given by the mapping
using direct substitution, the new
resulting Clause-Set S' is said to be in a
Variable Space (VS) different than S.
If S and S' are Clause-Sets of the same
node, then this node is called a Mixed-
Space Node (MSN) as opposed to
Single-Space Nodes (SSN) whose
Clause-Sets are not renamed. Trees with
MSN nodes are called Mixed-Space
Trees (MSTs). Trees with only SSNs
are called Single-Space Trees (SSTs).
Example:

For S = {{0,5}{0,2}{1,3}{1,4}{2,3}}
and S' = Mapping# (S,M) =
{{0,1}{0,2}{3,4}{3,5}{2,4}} in the
above example, Mapping M has the
following extension:
{{0,0}{5,1}{2,2}{1,3}{3,4}{4,5}},
Stable-Set = {0,2}

Definition 11: The Clauses Renaming
& Ordering Algorithm (CRA+) is a
procedure which takes an a.a. Clause-
Set S as input and applies CRA
repetitively generating a new mapping

each time. After each step the
intermediate Clause-Set is sorted as
required by Definition 1b) before
iterating back. This is done until
renaming literal indices in two
consecutive steps yields tMapping, i.e,
the Stable-Set becomes equivalent with
the Set LIT(S)) while the output Clause-
Set S' becomes l.o. A recursive pseudo-
formal description of this procedure is
used in the below proofs:

CRA+:
Inputs: a.a. Clause-Set S
Output: l.o. Clause-Set S’
Steps:

4- set CurrentMapping = null,
CurrentSet=S

5- while (CurrentMapping != tMapping)

i. currentSet=CRA(CurrentSet)
ii. sort CurrentSet as instructed

in Definition 1 b)
iii. set CurrentMapping=Mapping

passed by CRA
6- S’=CurrentSet
7- return S’

Example: Following this procedure for
the above Set S = {{0,5}{0,2}{1,3}
{1,4}{2,3}} applying CRA to get S' =
{{0,1}{0,2}{3,4}{3,5}{2,4}} and a
sorting step giving the above S''={{0,1}
{0,2}{2,4}{3,4}{3,5}}.
A new CRA-iteration will yield the
following Connection Matrix:

 C0 C1 C2 C3 C4
0 True True False False False
1 True False False False False
2 False True True False False
4 False False True True False
3 False False False True True
5 False False False False True

It is then transformed to:
 C0 C1 C2 C3 C4
0 True True False False False
1 True False False False False
2 False True True False False
3 False False True True False
4 False False False True True
5 False False False False True

Abdelwahab, N.
	

	

156	

156	

Mapping:
{{0,0}{1,1}{2,2}{4,3}{3,4}{5,5}},
Stable-Set: {0,1,2,5} yields
S'''={{0,1}{0,2}{2,3}{3,4){4,5}} when
applied on S'' which is l.o. already and
needs no further sorting. Note that in
the last matrix all literals are forming an
ordered sequence which means that any
further renaming would result in
tMapping. This is the termination
condition.

Lemma 4: CRA is guaranteed to
convert an a.a. Clause-Set S into a l.o.u.
Clause-Set. It takes O(N*M) steps94 to
do this for M = number of clauses, N =
number of variables.

Proof: c.f. the three conditions of
Definition 1 for a Clause-Set to be
l.o.u.:

a) ∀ai,bijcij∈Ci+j: ai<bij<cij
c) ∀x ∈ LIT(S), ∀C ∈ S:

if x not ∈ LEFT(x,C) then
∀y ∈ LEFT(x,C): x>y

d) Clauses appear only once in S

It is clear that a) and d) are fulfilled by
any output of the CRA as they
constitute the mere definition of a.a.
Sets. For Condition c): Suppose some
literal L in a clause Ci={... L ...} ∈ S'
(S' = output Set) breached Condition c):
This means that L is new in the clause
sequence starting with C0 until Ci, but
there exists L' to its left where L<L'.
This cannot be the case, since any such
L' would have to appear in a row before
L in the connection matrix (step 2-) and
thus get a smaller index in the renaming
step 3-. For the complexity assertion:
The number of cells to be created in a
Connection Matrix is always N*M.
(Q.E.D.)

94 Steps are invocations of primitive operations
as usually understood in complexity analysis.

Lemma 5: A Set S is l.o. iff it reaches a
Stable-Set of literals equivalent to
LIT(S) through application of CRA+.

Proof: Suppose S is l.o. This means that
it is fulfilling all Conditions a)-d) of
Definition 1. Any attempt to use CRA+,
i.e., rename the literals and then sort
them, must generate a Stable-Set =
LIT(S) after only one CRA- and sorting
iteration, since otherwise (i.e., if a literal
gets a new name/index after such an
iteration) this would mean a breach of
one or all of those conditions. Other
direction: Suppose S reached such a
Stable-Set through application of CRA+,
i.e., CRA+ terminated. If S is not l.o.,
then it must be at least l.o.u. (because of
Lemma 4). The only reason for S not to
be l.o. would thus be that clauses are
not sorted correctly. This is not possible
because CRA+ can only become a
Stable-Set equivalent to LIT(S) if two
consecutive renaming iterations assign
literals with the same names/indices, the
first of which is followed per Definition
by a sorting operation.
(Q.E.D.)

Lemma 6: CRA+ takes a number of
steps which is O(M2(logM+N)). More
precisely M CRA-iterations and M
sorting operations95 (M = number of
clauses in S, an a.a Set).

Proof: (by induction on M)

Base-Case: M=1: For S={a,b,c} CRA+
takes one CRA and one sorting
operation to generate tMapping per
definition.

Illustration Case: M=296
Let S={{a,b,c},{d,e,f}}={C0,C1}

95 Assuming that a sorting operation takes
O(M log M) primitive operations.
96 Monotone 3-SAT case is used here and in the
next lemma (w.l.o.g.), since CRA+’s behavior
does not depend neither on literal signs nor on
clause breadth.

Abdelwahab, N.
	

	

157	

157	

Case 1: No literals in common between
C0 and C1: In that case a<b<c<d<e<f.
S is l.o. No CRA- or sorting iterations
needed.
Case 2: Only head-literal in common:
S={{a,b,c}{a,e,f}} for example97:
Same as case 1, S is also l.o.
No CRA or sorting needed.
Case 3: Only middle-literal in common:
S={{a,b,c}{b,d,f}} for example: S’ is
converted after one CRA-iteration to
S={{a,b,c}{a,e,f}}, because of
Definition 9, 2a), Renaming Precedence
Condition (RPC).
Thus, no sorting needed.
Case 4: Only tail-literal in common:
S={{a,b,c}{c,d,e}} for example: S’ is
converted after one CRA-iteration to
S={{a,b,c}{a,e,f}} (RPC as well), no
sorting needed.
Case 5: Two literals in common: All
forms are converted to the form
S={{a,b,c}{a,b,d}} (RPC) requiring
only one CRA-operation and no sorting.

Resuming the Base-Cases M=1,2:
Although we may not need CRA or
sorting, CRA+ takes at least one
iteration (i.e., one CRA- and one sorting
operation) to generate tMapping and to
terminate.

Induction Hypothesis: For M clauses
M CRA-iterations as well as M sorting
operations are needed in the worst case
to make S l.o.

Induction step: For any additional
clause CM+1 = {x,y,z} we have the
following cases (c.f. Definition 11,
pseudo formal procedure):

1. x,y,z are new literals not
appearing before in any clause
Ci: This case is straightforward in
that no sorting is needed, i.e., only
CRA (renaming) in the worst case.

97 Another example could be: {{a,b,c}{b,e,f}}.

2. One or more literals of x,y,z
appeared in a previous clause:
Suppose S={{0,1} {0,2,3} {0,4,5}
{0,6,7} {2,8} {9,10} {11,12}}
which is l.o. adding the clause
{3,5,15}, then the following steps
are required:
a) S={{0,1}{0,2,3}{0,4,5}{0,6,7}

{2,8}{9,10}{11,12}{3,5,15}}
input

b) S={{0,1}{0,2,3}{0,4,5}{0,6,7}
{2,8}{3,5,15}{9,10}{11,12}}
sort

c) S={{0,1}{0,2,3}{0,4,5}{0,6,7}
{2,8}{3,5,9}{10,11}{12,13}}
CRA

S in step c) is already l.o., i.e., for a
Clause-Set of size M S={{a,b,..} {b,…}
{d,…}…} where as per induction
hypothesis it is assumed that it is l.o.
and we add a clause containing one or
more literals which appeared before
(s,t,u,…) and one or more literals which
are new (x,y,…), we note that S is l.o.u.
A sorting step is what is required to
align the new clause to its right place. If
this step is done (c.f. step b)), then
another CRA-step (c.f. step c))
guarantees both l.o.u (per Lemma 4)
and sorting condition. This means that
we need an additional CRA (renaming)
as well as a sorting step for this case.

Resuming the induction step: One
additional CRA- and one additional
sorting step is needed in the worst case
for M+1
(Q.E.D.)

This section concludes with a lemma
showing that any a.a. Set can be
converted to a l.o. Set, i.e., application
of CRA+ on any a.a. Set always
terminates yielding the right result.

Lemma 7: CRA+ terminates always
converting any a.a. 3-SAT-CNF-Set S
of size M to a Stable-Clause-Set.

Abdelwahab, N.
	

	

158	

158	

Proof: (by induction on M)

Base-Case M=1: For S={a,b,c} as seen
in the Base-Case of Lemma 6, CRA+
terminates after one iteration yielding
the Clause-Set S’={a’,b’,c’} where
a’,b’,c’ are new indices/names for a,b,c.
S’ is stable.

Illustration Case M=2: Let
S={{a,b,c}{x,y,z}}. As seen in all Base-
Cases for M=2 of Lemma 6: One
iteration of CRA and one sorting
operation converts S to a l.o. Set. This
means any further iteration of CRA+
yields a Stable-Set (per definition of
CRA+) letting the algorithm terminate.

Induction Hypothesis: Application of
CRA+ for a number of iterations k on an
a.a. 3-SAT-CNF Clause-Set S of size M
converts S to a Stable-Clause-Set (i.e.,
CRA+ produces M stable clauses after k
iterations).

Induction Step: Per induction
hypothesis for S = M+1, there are M
stable clauses in iteration k. Let
C={x,y,z} be the clause which is not
stable. After step k C’s position cannot
be before any other stable clause
C’={i,j,k}, e.g., as in {a,b,c}…{x,y,z}
{i,j,k}…, because this would mean that
CRA-operations will have to change
indices i,j,k to new ones for C’
contradicting its stability assumption,
i.e., C has to be the last clause in S.
In that case, even if literals in C would
not fulfill the l.o. condition for whatever
reason other than sorting (because C is
already in its place), further CRA-steps
in iterations >=k guarantee to convert C
into a stable clause (per definition of
CRA+)98 causing CRA+ to terminate
with a Stable-Clause-Set of size M+1.
(Q.E.D.)

98 CRA renders {S ∪ C} l.o.u., i.e., any new
literal v of C is >left(v) in {S ∪ C} after an
iteration.

Abdelwahab, N.
	

	

159	

159	

E) GSPRA+ FOR ARBITRARY 3-SAT-CNF CLAUSE-SETS

It is possible to convert GSPRA to an algorithm using MSTs (called: GSPRA+) which
produces for arbitrary Clause-Sets of 3-SAT-CNF-problems SRTs of similar properties
as s.o. ones99. Consider the following programs written in pseudo code:

GSPRA+(S):

Inputs: Arbitrary 3-SAT-CNF Clause-Set S of size M
Outputs: Final SRT
Data Structure: list of Tuples: < Clause-Sets, Node index> (called: LCS)
initially empty
 Steps: -

1- convert arbitrary clauses in S to a.a. ones (sorting literals inside each
clause).

2- choose a clause C0 which guarantees a minimal top-part of the SRT
containing unique-nodes100. For that choice apply the below
procedure SelectFirstClause.

3- convert S to a l.o. Set using CRA+
4- convert C0 of S to an SRT in a way similar to the one described in

Definition 2
5- set IRT (Intermediate Resolution Tree) = SRT produced in 4
6- for all the rest Clauses Ci of S

a. convert Ci to an SRT
b. IRT=Align(IRT,Ci)

7- return IRT

Align (SRT, C):
Inputs: an SRT with base-node of size M, an a.a. 3-SAT-CNF-clause C
Outputs: an SRT for a Base-Set of size M+1

 Steps:
1. Let n be base-node of SRT, S Clause-Set of n
2. If M>1

a. S ∪ C is l.o.
i. set S’= S ∪ C, put S’ Clause-Set of n

ii. instantiate C to become C’ and C’’ according to left-
and right edges of n taking into consideration the
least-literal/clause-rule of Definition 2 (respectively)

iii. if (BaseSet(leftTree(n)) ∪ C’ is found in LCS)
Then leftTree(n)= foundNodeIndex
else leftTree(n)=Align(leftTree(n),C’), Store
<BaseSet(leftTree(n)), NewNodeIndex> in LCS

iv. if (BaseSet(rightTree(n)) ∪ C’’ is found in LCS)

99 Remember that s.o. Sets were SSTs not MSTs as the ones produced by GSPRA+.
100 Recall that the top-part of an SRT of a node of size M contains at most k unique M-sized (THN) and k
not necessarily unique <M-sized (TBN) nodes where k is the size of the first clause chosen (c.f. Property
8 in Section B). The idea here is to produce top-parts with minimal unique-nodes.

Abdelwahab, N.
	

	

160	

160	

Then rightTree(n)=foundNodeIndex
else rightTree(n)=Align(rightTree(n),C’’), Store
<BaseSet(rightTree(n)),NewNodeIndex> in LCS

v. return SRT of n
b. S ∪ C is not l.o.

i. set S’= S ∪ C
ii. convert S’ to l.o. using CRA+

iii. set S’ Clause-Set of n
iv. separate last clause of S’, i.e., S’=S’’ ∪ A
v. if (C<>A), i.e., the last clause in S’ is not C

1. set SRT’= GSPRA+(S’’), i.e., rebuild the SRT
for n once more

2. set SRT of n = SRT’
vi. instantiate A to become A’ and A’’ according to left-

and right edges of n taking into consideration the
least-literal/clause-rule (respectively)

vii. if (BaseSet(leftTree(n)) ∪ A’ is found in LCS)
Then leftTree(n)= foundNodeIndex
else leftTree(n)=Align(leftTree(n),A’), Store
<BaseSet(leftTree(n)),NewNodeIndex> in LCS

viii. if (BaseSet(rightTree(n)) ∪ A’’ is found in LCS)
Then rightTree(n)=foundNodeIndex
else rightTree(n)=Align(rightTree(n),A’’), Store
<BaseSet(rightTree(n)),NewNodeIndex> in LCS

ix. return SRT of n
3. If M=1

a. let S’= S ∪ C, put S’ Clause-Set of n
b. if Convert S’ to become l.o. using CRA+ if it is not already. C

is converted to C#
c. for all nodes n’ of SRT , SS Clause-Set of n’:

i. propagate C# to n’ instantiating it according to the
edges in SRT leading to n’ so that it becomes CC. Use
least-literal/clause-rule

ii. set SS = SS ∪ CC
d. return SRT of n

SelectFirstClause(S):
Inputs: an a.a. 3-SAT-CNF-Clause-Set S
Outputs: a clause C from S

 Steps:
1- For all Clauses C’ in S:

i. choose C’ to be first clause
ii. for all possible literal arrangements in C’:

1. set MinNumber = Number of unique-nodes resulting from
instantiation of literals of C’ in the top-part of the SRT

Abdelwahab, N.
	

	

161	

161	

2. if the newly calculated number of unique-nodes for C’ <
previously stored MinNumber, then set
MinNumber=newly calculated one, bestClause=C’ in the
current literal arrangement

2- return bestClause.

E-1: Example for the usage of GSPRA+ on a.a. 3-SAT-CNF Clause-Sets101
Let S = {{0,¬1}{0,2,¬3}{0,4,¬5}{2,¬6}{¬3,4,5}{4,6,7}} be an a.a. 3-SAT-CNF-set.
Following are the steps taken as per the above description of GSPRA+:
1- Step 0: S is already l.o.
2- Step 1: End: The following SRTs (Fig. 42-45) are generated in subsequent steps
 using GSPRA+

101 For the sake of simplicity in the example it is assumed that SelectFirstClause uses the shortest clause.

Figure 42: T1
::

Figure 43: T2
::

Figure 44: T3
::

Abdelwahab, N.
	

	

162	

162	

Figure 45: T4
::

Abdelwahab, N.
	

	

163	

163	

From analyzing the above trees we
realize the following:
1. The number of unique-nodes which

are not leafs increases in a non-
exponential way from T1 to T4:
6,9,17,24.

2. Trees T2,T3,T4 generated by
GSPRA+ are MSTs (c.f. Definition
10).

3. All trees end with special sub-trees
which have one distinguished
clause tailing all their Clause-Sets.
Those clauses are called alignment-
clauses. They are circled in the
foregoing trees (Fig. 42-45). Trees
possessing alignment-clauses are
called aligned and are further
defined below. They shall play an
important role in understanding the
way GSPRA+ works.

4. As CRA+ is used for converting
clauses and Clause-Sets to l.o., it
might be the case that the original
order of literals in clauses changes
even deliberately in the new
variable space (as allowed in step
1.ii in SelectFirstClause procedure).
Consider for example the Set
S={{¬0}{1,¬2} {1,¬5} {¬2,3,4}
{3,¬4}{3,5,6}}102. CRA(S)={{¬0}
{1,¬2} {1,¬3} {¬2,4,5} {4,¬5}
{3,4,6}} where M(5)=3, M(3)=4,
M(6)=6, for the last clause {3,5,6}
thus changing places of literals in
that clause. GSPRA+ has therefore
no property similar to the linear
derivation property (Property 3) of
GSPRA.

5. Choice possibility of both clauses
and literal arrangements in the
SelectFirstClause procedure enable

102 This is an intermediate Set produced by
CRA+ while converting {¬1} {2,¬3} {4,¬5}
{2,¬6} {¬3,4,5} {4,6,7} to {¬0} {1,¬2}
{1,¬3} {¬2,4,5} {3,4,6} {4,¬5} in T4.

GSPRA+ to implement any strategy
producing an SRT whose Clause-
Sets are all l.o. provided that this
strategy minimizes the number of
unique-nodes in its top-part. This is
an important property to be used
later.

E-2: Node Equivalence vs. Clause-Set
Equivalence revisited
The notion of equivalence between
Clause-Sets used in Section B
(Properties: 5,6,10) can be extended
through mapping functions as follows:

Definition 12: Two Clause-Sets S1, S2
are said to be equivalent via mapping
(written S1 ≈m S2) iff S1=S2103 or there
exists a Mapping# function M and a
mapping m such that: M(S1,m)=S2 or
M(S2,m)=S1.

As GSPRA+ uses an algorithm to
determine whether a node/SRT has been
already created or not to avoid
redundancies and minimize nodes (c.f.
steps: 2-a-iii & iv, 2-b-vi & vii in the
definition of GSPRA+), this effort can
be restricted to comparing already
resolved Clause-Sets with newly
created ones in each step. Because of
Property 10 (Algorithmic Equivalence =
Syntactical Equivalence), this implies
the necessity of investigating whether
the above equivalence-via-mapping
concept disturbs that property or not. It
could disturb the property only in case
"Syntactical Equivalence" and
"equivalence-via-mapping" were not
one and the same property as formalized
in the following lemma.

Lemma 8: Assuming S1 ≈m S2, then
there always exist Clause-Sets S1’ and
S2’ fulfilling S1 ≈m S2 iff S1’=S2’

Proof: Per Definition 12 either S1=S2
and in that case this assertion is trivially

103 Syntactical Equivalence implies the
existence of a trivial mapping between S1, S2.

Abdelwahab, N.
	

	

164	

164	

valid or there exists a Mapping#
function M and a mapping m such that:
M(S1,m)=S2 or M(S2,m)=S1.
Suppose M(S1,m)=S2, i.e., literals of S1
can be substituted by others in a way
prescribed by m to yield S2. What
happens if we apply CRA+ to both, S1
and S2?
Since structures of those Clause-Sets
are the same (else substitution of
different literal names wouldn’t have
rendered them syntactically equivalent),
connection matrices constructed by
CRA will also be the same getting
S1’=S2’=CRA+(S1)=CRA+(S2).
(Q.E.D.)

Lemma 8 asserts that equivalent Clause-
Sets used under GSPRA+ can have one
common syntactical form, namely the
one produced by CRA+. This amounts
to instructing GSPRA+ to only store
Clause-Sets in its LCS data structure
after converting them to a canonical
form using CRA+ (which we call further
down: CRA-form).
Having established that checking
Syntactical Equivalence of Clause-Sets
in SRTs produced by GSPRA+ is
sufficient to identify redundant
nodes/SRTs, a straightforward
algorithm will demonstrate how to do
that:

CompareSets: -

Inputs: two a.a. 3-SAT-CNF Clause-Sets S1,S2 of sizes <=M
Outputs: TRUE/FALSE

 Steps: - for all clauses C in S1: Set C’=next clause in S2
 if (CompareClauses(C,C’)=FALSE) return FALSE

return TRUE
CompareClauses: -

Inputs: two a.a. 3-SAT-CNF-clauses C1,C2
Outputs: TRUE/FALSE
Steps: - for all literals lit in C1: Set lit’=next literal in C2

 if (lit<>lit’) return FALSE
 return TRUE
Note that CompareSets has O(M) primitive operations, since CompareClauses is in
O(c), c constant.

E-3: Splits in MSTs
Although MSTs produced by GSPRA+
are not s.o., a lemma about splits
(similar to Lemma 3) can be formulated
after two definitions:

Definition 13: A MST whose Clause-
Sets are all l.o. is called: Sequentially-
Ordered, Multi-spaced SRT (notation:
MSRTs.o.). A block Bx whose Clause-
Sets or derivations thereof (all or part of
them) belong to more than one Variable
Space is called a Multiple Space Block,
MSB (notation: Bx

S1,S2,..,S1,S2,..
Variable Spaces). A node in a space ST
(called: Target Space, TS) which is
common between two or more Variable

Spaces is called Multiple Space
Common-node, MSCN (written:
[q]ST

S1,S2,..,S1,S2,..,ST Variable Spaces).
More formally104: A node is called
MSCN if in step k of the resolution it
becomes common child to two or more
nodes of different spaces ([x]S1, [y]S2,
[z]S3, … in Fig. 46)105 generated in
steps <=k. This happens when there
exist mappings M1,M2,M3…, such that:
x=M1(x’),y=M2(y’),z=M3(z’),…, where
x, y, z are literals in ST, and x’, y’, z’ are

104 c.f. with Definition 5, Section A)
105 The notation [x]S1 is read: Node [x] in
Variable Space S1.

Abdelwahab, N.
	

	

165	

165	

S2 S3 S1

ST

X=M1(X’)

Y=M2(y’) ……

X’ Y’ Z’ ……..

Q

literals replaced by TRUE or FALSE in
their respective Clause-Sets and
respective Spaces. The common-node
[q]ST

S1,S2,.. contains the first appearance
of its name literal (NL) q in all branches
of the MSRTs.o containing [x’]S1, [y’]S2,
[z’]S3, … etc. and there exist literals q’,
q’’, q’’’, etc. in Spaces S1,S2,S3,… such
that: q=M1(q’)=M2(q’’)=M3(q’’’)=…
etc.

Figure 46: Multiple Space Common-Node
 (MSCN)

Figure 47: Illustration of Definition 13 where
ST=Space1, [c] ST

Space2={{c,e}} is an MSCN,
Bc

ST,Space2={{c,d}{c,e}}, M={(d>a), (c>b),
(e>c)}. [c]ST

Space2 is obviously child to both,
[b]ST={{b,c,d}{c,e}} and [a]Space2={{a}{b,c}}
with edge-literals b and a=M(d).

Definition 14: An MSCN is called DS-
MSCNz (Double-Sided MSCN with
respect to literal z)106 if there exist at
least two edge- or branch-literals x, y

106 c.f. definitions provided here with
definitions of DSCNs and SSCNs in Lemma 2.

from Spaces S1, S2 respectively and a
literal z from the target space ST such
that: x=M1(z), y=M2(z), y=¬x.
Literals x and y are also called
distinguished (c.f. Lemma 2 and 3).
If an edge- or branch-literal a from
Spaces (for which an MSCN is a sink)
is not distinguished then the MSCN is
called SS-MSCNa (Single-Sided MSCN
with respect to a). An MSCN is called
trivial MSCN, tMSCN, if it is formed
through a newly resolved clause in step
k, who belongs to an MSB to which one
or more of its parents belonged in steps
<k.
[c]ST

Space2={{c,e}} in the example above
of Figure 47 is thus a SS-MSCNb. We
are now ready for the following
important lemma which is basically a
generalization of Lemma 3 of Section
C:

Lemma 9: For any trees produced
while resolving an a.a. 3-SAT-CNF
Clause-Set S the following is valid:

a) MSCNs generated by GSPRA+ in
step k and containing rank 3
clauses cannot be split in any step
>k.

b) The only splits possible in IRTs
generated by GSPRA+ for S are
trivial ones related to size 1
MSCNs. Their maximum number
is RCC3-SAT for any MSCN in any
step.

c) For SPR-like- or unlike
resolution-procedures: If all IRTs
produced during resolution of S
are free of BigSps then the final
SRT must be an MSRTs.o.

Proof: We recall the generic form of an
MSCN [q]ST

sp1,sp2,sp3,.. whose edge- or
branch-literals can be either
distinguished or not:

 (....){.., }Sp1

aST=M1(x)
¬bST=M3(z)

 {..,q,…}..Sp3

{ }ST

 (....){ }Sp2

bST=M2(y)

Figure 48
::

Abdelwahab, N.
	

	

166	

166	

a- If [q]ST
sp1,sp2,sp3,.. has a rank 3

clause C’={a’,b’,c’}ST among its
clauses, then obviously, when
C’ was added, equivalent images
Ci of a certain clause C from S
(the Base-Set) traversed all
branches leading to the MSCN
in respective spaces Spi to
augment [q]ST

sp1,sp2,sp3,.. with
C’107. All literals of those
images Ci were >= literals
occurring to their left in their
respective Clause-Sets in all
branches and all spaces, because
of the l.o. condition. Thus:

C1={M-1
1(a’),M-1

1(b’),M-1
1(c’)}Sp1,

C2={M-1
2(a’),M-1

2(b’),M-1
2(c’)}Sp2,

C3={M-1
3(a’),M-1

3(b’),M-1
3(c’)}Sp3,

etc…

were clauses added to parent
Clause-Sets of [q]ST

sp1,sp2,sp3,.. in
all respective branches. On the
other hand: Any clause
attempting to split [q]ST

sp1,sp2,sp3,..
after it is created through any
Space Spi must traverse those
branches again and contain
literals <M-1

i(a’) in Spi. This
contradicts the l.o. assumption
imposed on all Clause-Sets and
all spaces.

b- Similar to the argument used in
the proof of Lemma 3(c):
Supported- and direct-parent
MSCNs108 cannot cause a split
after the size of an MSCN is
increased anyway, because they
already started an MSB in their

107 All images Ci traversing branches leading to
the MSCN need to be equivalent (via mapping)
otherwise a split would occur. Moreover, they
need to be images of C (vs. a derivation of it)
because C‘ is of rank 3.
108 A formal definition of supported- and
direct-parent MSCNs is omitted here to avoid
unnecessary length. Their definition is similar to
the one given for the single-spaced case (c.f.
Definition 5, Section A).

respective spaces different than
the one they were instantiating
when the MSCN was created.
Suppose the size of
[q]ST

sp1,sp2,sp3,.. is augmented
through a clause of the same
MSB, one or more of [q]’s
parent(s) are instantiating to
become >1. This obviously
cannot be done – after the
MSCN formation - through
distinguished edge- or branch-
literals or their images, because
such an attempt would result in
a split. Suppose the MSCN is
augmented by the non-
distinguished literal aST and its
images (which becomes CNAL
in that case). It means that
equivalent images of the same
derivation of a clause of S, say
C’’, are passed through all
branches and edges of different
spaces to the Clause-Set of
[q]ST

sp1,sp2,sp3,…. This can only
happen if all other edge- or
branch-literals of this MSCN
(and their images in all involved
spaces representing literals other
than aST) were not present in C’’
and/or its images. Otherwise
more than one derivation would
have resulted and would have
caused a split. An attempt to
split this MSCN in a further step
using literals other than aST or
its images is therefore only
fruitful if Clause-Sets of the
form:

{{b,..}…{<no b>}…{…b…}..}spi

for arbitrary literals b are
allowed in an Spi. This is not the
case since all Clause-Sets in all
spaces must be l.o. On the other
hand: Literal aST itself or any of
its images cannot be used for
splitting the node because all
branches in all spaces must have

Abdelwahab, N.
	

	

167	

167	

agreed upon its instantiation
when the node was increased in
size. This means that an MSCN
whose size becomes >1 in a step
cannot be split further in any
subsequent step. What about
tMSCNs which relate to
symmetric and dissymmetric
MSBs and which may be
augmented to sizes >1 before
formation?109 Recall that per
Lemma 3: L.o.s. conditions
imposed on SBs and MBs were
sufficient to avoid the formation
of similar single spaced tCNs. Is
this also possible for tMSCNs?
To see that it is indeed the case,
it is sufficient to remember that,
if not scattered, MSBs are
always represented in one CRA-
form. This means that even
though they span different
spaces, a target space can always
be found in which those blocks
are expressed. In such a case all
results of Lemma 3 are
applicable, i.e. tMSCNs can be
avoided, because l.o. and l.o.s.
conditions produce equivalent
SRTs. If MSBs are scattered :
Fragments in different spaces
are, again, represented in CRA-
form allowing all clauses headed
by an MSB-head-literal to be
sorted in a way preserving the
property that l.o.s. and l.o.
conditions produce the same
SRTs. The only difference
between those two conditions
being related to positions of –ve
and +ve occurrences of the
MSB-head-literal, it is irrelevant
which occurrences come first,
since only the instantiation of

109 Formal Definitions of symmetric and
dissymmetric MSBs are not given here to avoid
unnecessary length. The reader is referred to Lemma
2 to recall those notions.

this literal in the whole scattered
block is producing the tMSCN
(compare with the proof of
Lemma 3-c). In Summary:
When MSCNs are increased to
sizes >1 they cannot split while
tMSCNs can be avoided
altogether whether MSBs are
scattered or not. This means that
there are at most only size 1
splits.
As seen before in Lemma 3(c),
the number of possible
derivations of a new to-be-
resolved clause in GSPRA+ is
RCC3-SAT. Therefore, only
RCC3-SAT splits of any size 1
MSCN are possible per step in
the worst case.

c- If all IRTs produced during
resolution are free of BigSps:
This means that neither
Condition b) nor c) of Definition
1 were breached in the course of
resolution in all Clause-Sets of
all IRTs (their breach causes N-
and rank 3 CN-splits
respectively), i.e., all Clause-
Sets in all subsequent IRTs
(including the final one) were
l.o.. Hence, the final one is an
MSRTs.o. as well. Note that this
assertion is weaker than the one
made in Lemma 3(d), but
generic enough to allow a
broader understanding of
properties not only of GSPRA+
and SPR-like procedures, but
also of SPR-unlike ones (for
reasons stated in Section E-5).

(Q.E.D.)

E-4: Way of Work of GSPRA+
As in the case of s.o. SRTs, Lemma 9
guarantees that using GSPRA+ produces
only trivial splits which is a significant
indication concerning its efficiency. It is
still necessary to understand what

Abdelwahab, N.
	

	

168	

168	

GSPRA+ really does when it imposes
the l.o. condition on clauses.

Definition 15: An MSRTs.o produced
by GSPRA+ for an arbitrary 3-SAT-
CNF Clause-Set S is said to be aligned
if ∃C∈S:∀n node not leaf MSRTs.o.,
∀S’, X where: S’ Clause-Set of n,
X ∈ S’ the following is true :

a) SortOrder(C or its derivations
C’,S’) >SortOrder(X,S’)

b) S’ is l.o.
In other words: Either C or one of its
derivations C’ are the last clauses in any
Clause-Set of the MSRTs.o. C is called
alignment-clause.

Definition 16: A node n of size M is
said to be aligned if:

a) For M<=2: n possesses a
Clause-Set with an aligned
MSRTs.o

b) For M>2:
(i) All sub-nodes of size M are

l.o.
(ii) All sub-nodes of size <M are

aligned

The Set of all unique clauses and their
derivations used for the alignment of all
nodes of an MSRTs.o of an arbitrary 3-
SAT-CNF Clause-Set S is called
Alignment Clause-Set of (ACS).
Obviously, ACS cannot have more than
RCC3-SAT*M elements/clauses
containing all possible permutations of
literals in linear- or non-linear
sequences.

Lemma 10: All size 1,2 nodes of any
MSRTs.o of a 3-SAT-CNF Clause-Set S
produced by GSPRA+ are aligned.

Proof: For size 1 nodes it is clear that
the MSRTs.o representing any single
clause is aligned per definition with the
single clause itself being the alignment-
clause. For size 2 nodes of the form
S={{a,b,c}{x,y,z}}let's recall that
GSPRA+ converts any such Clause-Set
to a l.o. Clause-Set using CRA+ (step 3
in the GSPRA+ algorithm description).
This leads to the following cases:
Case 1 (Fig. 49): No literals are
common between the two clauses. The
clause {x,y,z} is then the alignment-
clause (for this type of situation, c.f. for
example the circled sub-tree {2!,3,4} of
T3 in Fig. 44). Here one of the general
forms:

 Figure 49

{b11, c11}{x,y,z}

{a1, b11, c11}{x,y,z}

{x,y,z}

{x,y,z}
{c11}{x,y,z}

a1 ¬a1

b11 ¬b11

¬c11 c11

FALSE

x

{x,y,z}

TRUE
{y,z}

¬x

y
TRUE

¬y

{z}

TRUE
¬z

FALSE

Abdelwahab, N.
	

	

169	

169	

Case 2 (Fig. 50): There is one literal in common independent of the specific place of
this literal. Because of the renaming precedence condition of CRA, all Clause-Sets will
be converted via CRA+ to the form {a,b,c}{a,y,z} which has {a,y,z} as alignment-
clause110:

Figure 50

110 Only clauses with +ve literals are used in the illustration (w.l.o.g.), since -ve signs are irrelevant in the
current context.

b

¬a a

¬b

¬c c

¬y

¬z z

{b, c}{y,z}

{a, b, c}{a,y,z}

TRUE
{y,z} {c}{y,z}

{y,z}
FALSE

y

TRUE
{z}

TRUE
FALSE

Abdelwahab, N.
	

	

170	

170	

Case 3: There is more than one literal in
common. Because of the renaming
precedence condition all Clause-Sets
will be converted via CRA+ to the form
{{a,b,c}{a,b,d}}. This form has {a,b,d}
as alignment-clause and has a general
form similar to the above tree (Fig. 50).
(Q.E.D.)

Lemma 11: GSPRA+ produces aligned
MSRTs.os and possesses all properties
of GSPRA except the linear derivation
property (Property 3).

Proof:
1. Aligned MSRTs.os: M=3-sized

nodes are aligned because their M=2-
sized sub-nodes produced by
GSPRA+ in a resulting MSRTs.o are
all aligned (Lemma 10) and (as per
Definition 16) their M=3-sized sub-
nodes are l.o. The fact that all size
M=3 sub-nodes are aligned makes in
the same way all size M=4 nodes
aligned and so forth. In general: All
M-sized nodes are aligned because
all their M-1-sized sub-nodes are
aligned and their M-sized sub-nodes
are l.o. This implies that the final
MSRTs.o is aligned.

2. Properties (c.f. Section II B):
a) Property 1 (Completeness, truth

table equivalence): It is sufficient
to see that GSPRA+ only renames
variables/literals in Clause-Sets
whereby per definition of a truth
table, this operation doesn’t affect
any argument related to truth table
equivalence.

b) Property 2 (Expansion of
MSRTs.os): GSPRA+ uses the
least-literal/clause-rule (c.f. steps
2 a) and b) in the Align
Algorithm). This rule is
applicable within a space as well
as between spaces in the same
way described in the proof of this
property in Section B. Thus: If
nodes n1 and n2 belong to different

spaces and were not directly
connected in step k, they cannot
be directly connected in steps >k
because newly resolved clauses
don’t affect old results of an
application of the least-literal-rule
(except for tMSCN cases like the
one shown in the proof of Section
B). Also: Nodes of sizes j<=M
generated in step k are at most as
many as nodes of sizes j-1
existent in step k-1 (not counting
nodes generated through splits in
level j), since newly resolved
clauses have to traverse all
branches of IRTs, if necessary.
Assuming only unique-nodes are
permitted, then we have for the
worst case, i.e., the case where all
j-sized nodes in step k-1 become
j+1-sized in step k, the following
important consequence to be used
in Lemma 13:
There are as many newly
generated nodes at any size-level
j<=M in step k as there are newly
generated nodes at size-level j-1
in step k-1, not counting splits
produced in k at size-level j111.

c) Property 4 (Generation of non-
trivial CNs): Has to be slightly
changed to the following
property:
Property 4’ (Generation of non-
trivial CNs/MSCNs in
GSPRA+): The only non-trivial
CNs/MSCNs generated in any
step n by GSPRA+ while
resolving any clause C of a Set of
3-SAT-CNF-clauses are identical
with either C or derivations (not

111 Illustration of the worst case: Suppose we
have x size-1 nodes in step 0 (and no other sizes
in the tree), then additional x‘ size-1 nodes are
generated in step 1, another x‘‘ size-1 in step 2
etc. This means that size-2 nodes in step 1 will
be x and become x+x‘ in step 2, x+x‘+x‘‘ in step
3 etc., not counting splits in size-2 level.

Abdelwahab, N.
	

	

171	

171	

necessarily linear) of C which
are ∈ ACS.
To see that this property holds
suppose a non-trivial CN/MSCN
is generated in step k (either
between nodes of the same- or
different spaces) which is neither
C nor a derivation of it. This
implies that a "legacy" node
constructed in steps <k became
non-trivial CN/MSCN in step k.
This can only mean that at least
one new connection has been
established in step k between two
nodes which were previously not
connected. This is only possible in
the trivial case as per the Linear
Expansion Property 2. Moreover,
as renaming actions can alter the
sequence of literals in any clause,
this means that derivations of C
forming CNs/MSCNs could also
be non-linear. C and all its
derivations are ∈ ACS.

d) Property 5 (Uniqueness of
instantiation results) is a general
property valid for a.a. Clause-Sets
and SPR-like algorithms using the
least-literal-rule and thus valid for
all l.o. Clause-Sets in MSRTs.os of
GSPRA+ as well.

e) Property 6 (Syntactical
Equivalence): Identical with
Property 5.

f) Property 7 (FBDD Equivalence,
Branch-Linearity): The
argument in Section B uses the
least-literal-rule also used by
GSPRA+ which basically makes
variables/literals disappear from
all child-nodes of a Clause-Set
once they are instantiated
explaining why a variable/literal
can appear in a branch only once.
The difference between GSPRA
and GSPRA+ in this respect is that
GSPRA+ changes names of
variables/literals using CRA+.

This doesn’t affect this property.
Part b) is also still valid for
GSPRA+

g) Property 8: Has to be slightly
changed to the following
property:
Property 8’ (Minimal top-part):
MSRTs.os produced by GSPRA+
for a.a. 3-SAT-CNF Clause-Sets S
of size M have a minimal unique-
node-count in their top-part
compared to any SPR-like- or
unlike procedure.
This property holds per definition
of GSPRA+ for SPR-like
procedures (c.f. step 2,
SelectFirstClause procedure).
Note that the difference between
GSPRA and GSPRA+ related to
the top-part of an SRT/MSRTs.o is
that GSPRA+ minimizes the
number of unique-nodes and uses
CRA+ to convert Clause-Sets to
l.o. Clause-Sets. GSPRA+ avoids
redundant <M-sized nodes, since
it searches LCS for any already
created similar Clause-Sets/nodes
and links them to the currently
processed one if found (c.f. steps
2-a-iii,iv and 2-b-vi,vii). To see
why GSPRA+’s unique-node-
count in the top-part of any
MSRTs.o is minimal for SPR-
unlike procedures as well, recall
that such a procedure PR must use
more than one clause for
instantiation in any top-part of
generated trees for Clause-Sets of
size M. All literals of one of those
clauses have to be instantiated to
complete such a top-part (per
definition of Top-parts in Property
8, Section B). Suppose the best
count of unique-nodes reachable
by PR in such a top-part is v.
Suppose now that instantiating all
literals of the shortest clause C of
S generates w unique-nodes, then

Abdelwahab, N.
	

	

172	

172	

obviously v>=w, because PR
could pick a clause which is not
shortest to fully instantiate.
Moreover, even if it picks the
shortest, it must still instantiate at
least one literal from another
clause which is an operation
generating at least one additional
unique-node of size M and not
necessarily unique node of size
<M in such a top-part. As
GSPRA+, uses the
SelectFirstClause procedure it
checks all clauses, including the
shortest. For the least unique-
node-count, it will produce w or
less (c.f. Argument in Property 8
Section B for reference and
comparison). Here is another
argument using refutation :
Suppose PR produces the best
count, say v, of unique nodes in
the top-part of a resolution tree.
This must have been produced
through instantiation of literals of
at least two clauses of S : C1, C2,
one of which, say C2, until it is
fully instantiated. Let us say that
the full instantiation of C2 alone
produces w unique Clause Sets.
Obviously v>=w, since any
literals in C1 which are not present
in C2 must generate at least one
additional unique node of size M
and not necessarily unique node
of size <M. If this is the case, then
GSPRA+ will definitely choose an
initial Clause producing <=w
unique node count, because it
must check C2 in the course of its
action, contradicting thus the
assumption.

h) Property 9 (generality of
canonical orderings) is a general
property valid for a.a. Clause-Sets
independent of the difference(s)
between GSPRA and GSPRA+.

i) Property 10 (Algorithmic
Equivalence = Syntactical
Equivalence) is a general
property valid for a.a. Clause-Sets
and dependent on the validity of
Properties 5,6. Lemma 8
enhanced Syntactical Equivalence
with the idea of CRA-form as
seen above.

(Q.E.D.)

It is about time to find an upper bound
for the total number of nodes in
MSRTs.o produced by GSPRA+. The
following lemma is straightforward:

Lemma 12: MSRTs.os produced by
GSPRA+ for 3-SAT-CNF Clause-Sets
of Sizes M=1, M=2 have at most 3*M,
O(M) non-leaf-nodes.

Proof: As seen in the proof of Lemma
10 above: MSRTs.os of M=1 have at
most 3 non-leaf-nodes per definition.
The alignment procedure for M=2
Clause-Sets produces 3 more non-leaf-
nodes at most (in the case when there
are no literals in common between both
clauses).
(Q.E.D.)

The following lemma is an important
assertion related to the upper bound of
unique-nodes produced by GSPRA+.

Lemma 13: In any step i of GSPRA+
resolving an a.a. Base-Clause-Set S of
size M112 with clause Ci-1: Newly added
size 1 nodes used to align any sub-trees
of Clause-Sets S’ of size <M produced
in steps <i can only be ∈ ACS113. The
total number of unique-nodes produced

112 When i=1, M=2 with clauses C0, C1
113 The realization that aligning a clause to an
MSRTs.o is actually the process of rearranging
resolution priorities of clauses in all sub-
nodes/Clause-Sets of this MSRTs.o (making the
base problem equivalent to sub-problems using
different clauses of the same S for alignment
with sub-trees) is central for this lemma.

Abdelwahab, N.
	

	

173	

173	

by GSPRA+ for S in the final MSRTs.o,
including those generated by splits, is
hence bounded above by:

3+ c*RCC3-SAT
2 *M4 + RCC3-SAT *M3,

c<=3, i.e., O(M4)

Proof: (by induction on M)

Base-Case: M=1: As in Lemma 10: For
size 1 nodes the MSRTs.o representing a
single clause which is aligned per
definition, the single clause itself being
the alignment-clause. For M=1 we
have:

i=0: 3 <3+ 3*(15)2 *(1)4

Illustration Case: M=2: The alignment
of clause C1 to C0 in step i=1 of the
resolution adds 3 to the nodes of the
MSRTs.o of clause C0 which are also 3
at most (Lemma 12). Thus, for step
M=2 we have:

i=1: 3+3 <3+ 3*(15)2 *(2)4

The practically used ACS-portion is
comprised of clause C1 and/or its
derivations as seen in Lemma 10.

Induction Hypothesis (size M):
If an IRT with a base-node of size M in
the form of Fig. 51 is produced by
adding in each step only elements of the
ACS to the size 1 nodes levels (while
aligning clauses to the intermediate
IRTs of previous steps), the total
number of unique-nodes, including
those resulting from splits, not
exceeding 3+c*RCC3-SAT

2 *M4 + RCC3-

SAT*M3 in this IRT, then:

Induction Step (size M+1):
When IRT is resolved in step i via
GSPRA+ with a clause Ci-1:
1. k M-sized nodes shall become k

M+1-sized nodes and l.o. as well
(per definition of GSPRA+ and the
fact that the base Clause-Set is l.o.).
The breadth k of the first clause C0 in
S is not altered. No other M+1-sized
nodes can be formed.

2. For <M-sized nodes (when they are
resolved with Ci-1 forming nodes of
Sizes <= M) the induction hypothesis
applies, i.e., step i produces for each
one of them at most |ACS|=RCC3-

SAT*M new nodes of size 1 in their
respective sub-trees (not counting
trivial size 1 splits). Suppose that a
clause C=Ci is aligned to such a node
n (Fig. 52) needing for the alignment
of sub-trees of n (not necessarily in
the same space) some other clauses
C’, C’’∈ ACS.
If two or more MSRTs.os of node n
or any other node are aligned with
the same clause C, C’ or C’’, then a
CN/MSCN possessing one unique
CRA-form (Lemma 8) will be built
within a space or between different
spaces for each one of C, C’ or C’’.
In addition: All such non-trivial
CNs/MSCNs114 can only represent
members of ACS as per Property 4’.
Thus, the total number of newly
formed unique size 1 nodes for all
nodes and sub-nodes in this step
(which may or may not become non-
trivial CNs/MSCNs) cannot exceed
|ACS| in the worst case, i.e., RCC3-

SAT *M.

114 Trivial CNs/MSCNs are not accounted for,
because they can be avoided w.l.o.g. as per
Lemma 9.

Figure 51: IRT with base-node M

::

Abdelwahab, N.
	

	

174	

174	

3. As per 2., the total number of
generated non-trivial CNs/MSCNs
cannot exceed RCC3-SAT *M2 in any
step. Assuming for the worst case
that each one of those nodes is split
by the newly resolved clause in step
i: Lemma 9(b) states that there are
RCC3-SAT ways to do this for any
CN/MSCN and that this split is for
size 1 nodes only, i.e., it produces
only a constant amount c(=<3) of
new nodes for each split115.
This takes the maximum amount of
newly added size 1 nodes (including
ACS-elements of point 2) in step i to:

c*RCC3-SAT
2 *M2+ RCC3-SAT *M

What about newly added nodes of
sizes >1? Lemma 9 assures that there
are no splits of nodes of sizes>1.
Moreover, Property 2, the Expansion
Property of MSRTs.os (Lemma 11)
asserts that for the worst case, i.e.,
when all size-j-level nodes are
assumed to become size-j+1-level
during resolution, the number of new
size j (<=M) nodes in any step
cannot exceed the number of new
size j-1 nodes created in a previous
step (if splits at level j are not

115 We are assuming hence that each newly
resolved clause in each step i comes with a
least-literal equivalent to previously instantiated
block literals of parent-nodes of every non-
trivial CN/MSCN created before in every space
and splits this non-trivial CN/MSCN in all
possible ways without breaching any l.o.
condition, a clear exaggeration.

counted as is the case here). This
indicates for step i that the
previously created

c*RCC3-SAT
2 *M2 + RCC3-SAT *M

nodes of size 1 (created in step i-1)
may in the worst case all be
propagated up the hierarchy of sizes
to form for each size-j-level of nodes

c*RCC3-SAT
2 *M2 + RCC3-SAT *M

new ones in that level in the worst
case116. This means that

c*RCC3-SAT
2 *M3 + RCC3-SAT *M2

new nodes are added in step i in all
levels at most, thus confirming the
given O(M4) bound.

(Q.E.D.)

E-5: Minimal MSRTs.os
In this section we prove that an
MSRTs.o. produced by GSPRA+ is
minimal compared to outputs of SPR-
like- or unlike resolution-procedures117
using canonical orderings and working
with non-l.o. 3-SAT-CNF Clause-Sets S
causing BigSps. Property 9 (Generality
of Canonical Orderings) enables us to
conclude then that it is also minimal for
similar procedures which use any
arbitrary type of orderings. In a further
step we show that any MSRTs.o.
produced by GSPRA+ is near-to-optimal
in terms of the number of nodes. This
finding prepares for the next section

116 In other words: In any step i, nodes of all
sizes may be propagated up the size-hierarchy if
they were not propagated before, but only non-
trivial CN/MSCNs are split at size-level 1. This
makes the max number of new size-1 nodes
generated in such a step i : O(M2) at all times as
seen. Per Lemma 9: No other splits exist in any
upper level of sizes, therefore, only those O(M2)
are counted as new additions in every size-level
of the hierarchy making the total number of
newly added nodes in all levels in step i: O(M3).
117 Remember: SPR-unlike procedures require
the use of more than one clause for instantiation
in a top-part of a resolution-tree allowing such a
top-part not to be minimal.

Space-1

SRT1 SRT2 SRT3
3

……..

C

 Node n
C aligned to n

C’’ C' C

C’ C’’

Space-N

Figure 52

::

Abdelwahab, N.
	

	

175	

175	

where FGPRA+ (the parallel counterpart
of GSPRA+) is shown to be a
polynomial-time 2-approximation
algorithm for the problem of finding the
minimal FBDD solving S (MinFBDD
Problem).

Lemma 14: Suppose S is a 3-SAT-CNF
a.a. Clause-Set of size M and PR is any
SPR-like- or unlike resolution-
procedure producing BigSps using a
canonical ordering to resolve S, CPR is
the total number of unique-nodes
produced by PR for S, CGSPRA+ is the
total number of unique-nodes produced
by GSPRA+ for the same S, then the
rate of expansion of trees118 produced
by PR in any step (α) is greater than or
equal to the rate of expansion of trees
produced by GSPRA+ in the same step
(β),

i.e., ∀i<=M:

CPR
i=α* CPR

i-1,
CGSPRA+

i= β* CGSPRA+
i-1

Where α>=β, and hence:

CPR >= CGSPRA+ 119

Proof: (Induction on M, the size of S)

Base-Case M=1: In this trivial case
both, GSPRA+ and PR produce an
SRT/MSRTs.o. for the only clause of S
which per definition have the same
number of nodes.

118 A factor expressing an upper bound of the
number of new nodes possibly created in any
step
119 CPR

i reads: Number of unique-nodes
produced by PR for Clause-Sets of size i.
Similarly for CGSPRA+

i.

Illustration Case M=2: A
characteristic Set S fulfilling a.a.
conditions can have a literal a breaching
Condition c) in Definition 1 in any node
of its tree (like the one chosen in the
below example permutations of
clauses)120. Below are resolution-trees
containing BigSps produced by PR
compared to MSRTs.o.s of GSPRA+ for
the following cases:

120 Monotone 3-SAT-cases are used (w.l.o.g.),
since negation signs are irrelevant for the
discussion here. Also: Not all possible
permutations of literals are demonstrated for the
described cases to avoid unnecessary length.

Abdelwahab, N.
	

	

176	

176	

Case 3 (Fig. 55): S={{b,c,d}{a,c,d}} two literals in common. Alpha=5/3, Beta=4/3, α>β

Figure 55

BigSps are clearly causing the larger expansion rates. MSRTs.o.s of GSPRA+ are minimal in
all the above cases.

Figure 54

Case 2 (Fig 54): S={{b,c,d}{a,c,f}}one literal in common. Alpha=3, Beta=5/3, α>β

Case 1 (Fig. 53): S={{b,c,d}{a,e,f}} no literals in common between the two Clause-
Sets. Alpha=3, Beta=2, α>β

Figure 53

Abdelwahab, N.
	

	

177	

177	

Induction Hypothesis: For S of Size
M: CPR

M >= CGSPRA+
M, ∀i<=M:

- CPR
i=α*CPR

i-1
- CGSPRA+

i=β*CGSPRA+
i-1

- α>=β

Induction Step: If S has size M+1, then
per definition of α and the induction
hypothesis we know that:

CPR
M+1

 = α* (CPR
M)

 >=α* (CGSPRA+
M)

In the same time :

CGSPRA+
M+1= β * (CGSPRA+

M)
Therefore:

CGSPRA+
M= CGSPRA+

M+1/ β

Substitution yields:

CPR
M+1>= α* (CGSPRA+

M+1/ β),

where α>=β which means that:

CPR
M+1>= CGSPRA+

M+1

(Q.E.D.)

A similar lemma for l.o.u Clause-Sets is
the following:

Lemma 15: Suppose S is a 3-SAT-CNF
l.o.u. Clause-Set of size M and PR is
any SPR-like- or unlike resolution-
procedure producing BigSps using a
canonical ordering to resolve S, CPR is
the total number of unique-nodes
produced by PR for S, where CGSPRA+ is
the total number of unique-nodes
produced by GSPRA+ for the same S,
then the rate of expansion of trees
produced by PR in any step is greater
than or equal to the rate of expansion of
trees produced by GSPRA+ in the same
step, i.e., ∀i<=M:

CPR
i=α* CPR

i-1,
CGSPRA+

i= β* CGSPRA+
i-1

where α>=β, hence:

CPR
M >= CGSPRA+

M

Proof: (Induction on M, the size of S)

Base-Case M=1: As before: GSPRA+
and PR produce an SRT/MSRTs.o. for
the only clause of S which per
definition have the same number of
nodes.
Illustration Case M=3: A generic Set
S fulfilling l.o.u. conditions can have a
clause C2 breaching Condition b) of
Definition 1 like the one chosen in the
below example permutations of clauses.
As there are for M=3 much more
permutations than can be included here,
a representative case is chosen. This is
the case where C0 and C2 have only one
common literal a causing the breach and
no other literals in common between
any two or more clauses121. Fig. 56a
and 56b illustrate resolution-trees
produced by PR compared to
MSRTs.o.of GSPRA+:

121 The reader is encouraged to use shown trees
to check other permutations as well (for
example: g=f=c).

Figure 56a

Abdelwahab, N.
	

	

178	

178	

Figure 56b

Note that for S’={{a,b,c}{d,e,f}} in above upper tree (Fig. 56a) the number of nodes of
a tree produced by PR is 6 making Alpha = 11/6 while S’’={{a,b,c}{a,d,e}} in the
above lower tree (Fig. 56b) as per GSPRA+ has 5 nodes making Beta = 8/5, i.e., α>β.
If we set g=c Clause-Sets become {{a,b,c}{d,e,f}{a,c,h}} for PR and {{a,b,c} {a,b,d}
{e,f,g}} for GSPRA+ (after CRA+ is used) giving us the below two trees (Fig. 57a and
57b) verifying the claim as well, since Alpha=11/6 and Beta=7/4. Induction Hypothesis
& Induction Step are both as in Lemma 14.

(Q.E.D.)

Figure 57a

Figure 57b

Abdelwahab, N.
	

	

179	

179	

Lemma 16: Suppose S is a 3-SAT-CNF
Clause-Set which is a.a. or l.o.u., then
the MSRTs.o. produced for S by
GSPRA+ is both, free of redundancy and
minimal in the number of unique-nodes
generated while resolving S compared
to any other SPR-like or unlike
resolution-procedure producing BigSps.
Proof: Let PR be an arbitrary SPR-like-
or unlike resolution-procedure
producing BigSps using an arbitrary
ordering to resolve an S which is either
a.a. or l.o.u. As per Property 9: If an
MSRTs.o. produced by GSPRA+ for S
has a minimal number of unique-nodes
with respect to all possible canonical
orderings used by procedures, then it is
minimal for all non-canonical orderings
used by those procedures as well.
Lemma 14, 15 state that the MSRTs.o.
produced by GSPRA+ for an a.a. or
l.o.u. S has a number of unique-nodes
which is minimal compared to any
SPR-like- or unlike procedure using
canonical orderings for S and producing
BigSps. Hence, an MSRTs.o. produced
by GSPRA+ is minimal with respect to
the number of nodes produced by PR as
well. Moreover, GSPRA+ is redundancy
free because of Property 10
(Algorithmic Equivalence = Syntactical
Equivalence) as well as Lemma 8 and
steps 2-a-iii and 2-b-vi which
implement both by guaranteeing that no
new node is created if a node with the
same Clause-Set (in CRA-form) already
exists.
(Q.E.D.)

The above three lemmas of this section
were concerned with the difference in
node-counts between resolution-trees
possessing BigSps and MSRTs.o.s which
are free of them. The main statement
of those lemmas being that any
FBDD-minimizing SPR-like- or
unlike procedure cannot produce
BigSps while resolving an a.a. or l.o.u.
Clause-Set, otherwise GSPRA+ yields

better results. This means also as per
Lemma 9(c) that optimal minimization
procedures must produce MSRTs.os. It is
still necessary to investigate the
difference in size between MSRTs.o.s,
which may have a variety of node-
counts. GSPRA+ allows many strategies
of selection of the first clause C0 as long
as they all result in a minimal top-part
of the final tree. Also: SPR-unlike
resolution-procedures may generate
MSRTs.o.s of competitive sizes although
they don’t guarantee minimal top-parts.
In what follows we will show that any
strategy used for generating a minimal
top-part of the MSRTs.o.s in GSPRA+
produces a tree near-to-optimal with
respect to the number of unique-nodes.
This is sufficient for the lemmas and
theorems of the next section.

Lemma 17: Suppose A1 is an SPR-like-
or unlike algorithm which always
generates an SRT with minimal number
of unique-nodes for an a.a. 3-SAT-CNF
Clause-Set S, say CMin in its resolution-
tree. A2 is an algorithm using GSPRA+,
then there exists an integer z such that
the total number of nodes generated by
A2, say C’, is bounded above by
CMin*(1+1/z), z>1.

Proof: (Induction on M, the size of S)

Base-Case M=1: Both A1 and A2
produce the same number of nodes for
the single clause, which is k122, its
breadth, k<=3, C’=CMin.

Induction Hypothesis:
S is an a.a. 3-SAT-CNF Clause-Set of
size M, T1 is a tree generated by A1
with Base-Set S1 and unique-node-
count CMin, T2 is a tree generated by A2
with Base-Set S2 and unique-node-
count C’, where S=S1=S2 via mapping
and there exists an integer z>1 such
that: C’=CMin*(1+1/z)

122 Excluding TRUE and FALSE nodes.

Abdelwahab, N.
	

	

180	

180	

Induction Step: For Clause-Sets S of
size M+1:
Suppose T=T2 is resolved in the
induction step with a clause CM to give
T’, then there are two cases:

Case 1: CM doesn’t affect the top-part
of T, i.e., no re-arrangement of clauses
of the Base-Set S2 is needed and CM is
just appended to the rear of all Clause-
Sets of size M of the top-part of T to
form the top-part of T’, then:
The top-part of T’ is still minimal if
constructed by A2 per definition of
GSPRA+. It is thus sufficient to
investigate what happens in the bottom
part. There are two possibilities
depending on which algorithm is used:

CMin
b=[a+b+c]-1/x*[a+b+c]=[a+b+c]*(1-1/x)

(1)
where CMin

b is the total number of
unique nodes generated in the bottom
part, a,b,c are the total number of nodes
generated by A1 for each respective
TBN of T when it is resolved with CM
(there are always maximum three of
those TBNs), 1/x is the portion of nodes
counted more than once (CMin

b should
be redundancy free).

Or:

Cb= [a’+b’+c’]-1/y * [a’+b’+c’]
(2)

where a’,b’,c’ and y have similar
meanings for A2. Obviously if we
choose z = Max(x,y) we have per
minimalism of A1:

CMin
b<=Cb<=[a’+b’+c’](1-1/z)

(3)

Using induction hypothesis: There
exists z’>1 such that:

Cb<=[a’+b’+c’](1-1/z)=(1+1/z’)[a+b+c](1-1/z)

(4)

where (1/z’)[a+b+c] are surplus-nodes
generated by A2123, then:

Cb<=(1+1/z’)[a+b+c](1-1/z)
 <=[a+b+c](1-1/z+1/z’-1/(z*z’))
 <=[a+b+c] (1+1/z’)

substituting for [a+b+c] using (1)

 <=CMin

b * x/(x-1) * (1+1/z’)
 <= CMin

b * [x/(x-1) + x/((x-1)*z’)]
 <= CMin

b * [xz’+x/(xz’-z’)]
 <= CMin

b * [(1+1/z’)/(1-1/x)]

we want thus to select a z’’ such that:

(1+1/z’)/(1-1/x)=1+1/z’’
1+1/z’ =(1+1/z’’)*(1-1/x)
 = 1-1/x+1/z’’-1/(x*z’’)
 <= 1+1/z’’

i.e., 1/z’<=1/z’’ and z’>=z’’

It is therefore sufficient to choose z’’=z’
to see that

Cb <= CMin
b * (1+1/z’)

(5)

i.e., that there exists an integer z’>1
which, if assumed to count the surplus
portion of nodes generated by A2 in step
i, is also counting the surplus-nodes
generated by the same algorithm in step
i+1.

Case 2: CM does affect the top-part of
T, i.e., re-arrangement of clauses of the
Base-Set S2 is needed, then GSPRA+
will convert S2 to an l.o Clause-Set
S2’=S2 of size M+1 (using CRA+)
whose last clause is CM’ and reconstruct
the tree for the first M clauses (as per
step 2-b.v. of GSPRA+’s definition). Set
T equal to this newly constructed tree,
then resolve CM’ with T. The rest of the
argument is similar to Case 1 since CM’
will not affect the top-part of T per
definition of l.o. Clause-Sets.
(Q.E.D.)

123 Recall that A1 and A2 are both applied on
the same TBNs of T.

Abdelwahab, N.
	

	

181	

181	

F) FGPRA+ FOR ARBITRARY,
3-SAT-CNF CLAUSE-SETS

GSPRA+ is a constructive algorithm
which served well to give us an upper
bound for the number of nodes resulting
from pattern-oriented resolution-
methods, but it is hardly practical,
because of the fact that it needs to

rebuild trees of nodes again and again in
each sequential step if they are found to
be not l.o. (c.f. step 2.b.iv in the above
description of Align). To overcome this
drawback, the following algorithm
(called: FGPRA+) works directly with
the whole Set of 3-SAT-CNF-clauses
and resolves them in parallel.

Prerequisites:
− convert arbitrary clauses in S to a.a. ones (sorting literals inside each clause)
− convert S to a l.o. Set S’ using CRA+
− make sure to sort S so that a clause which produces the least top-part is

selected first. Use for this SelectFirstClause procedure which was used for
GSPRA+

− create a base-node having S’ as Clause-Set and pass it to FGPRA+
Inputs: base-node
Outputs: an MSRTs.o
Data Structures used: list of Tuples: < Clause-Sets, Node index> (called:

LCS, initially empty)
Steps:
For current node n, Clause-Set S’:
if size of n > 1

1. use least-literal/clause-rule to instantiate all clauses in S’ accordingly
a. form leftInstantiatedClauseSetOfS’ and use CRA+ to make it l.o. if it is not
b. form rightInstantiatedClauseSetOfS’and use CRA+ to make it l.o. if it is not
c. make sure to sort both right- and left Clause-Sets of S’ so that the clause

which produces the least top-part is selected first. Use for this
SelectFirstClause procedure which was used for GSPRA+

2. search for leftInstantiatedClauseSetOfS’ in LCS
a. if found: Set leftNodeIndex of n = node index found
b. if not found:

i. create a new node for leftInstantiatedClauseSetOfS’
ii. give it an index I and Store the tuple <leftInstantiatedClauseSetOfS’, I >

in LCS
iii. set leftNodeIndex of n = I

3. search for rightInstantiatedClauseSetOfS’ in LCS
a. if found: Set rightNodeIndex of n = node index found
b. if not found:

i. create a new node for rightInstantiatedClauseSetOfS’
ii. give it an index J and store the tuple <rightInstantiatedClauseSetOfS’, J

> in LCS
iii. set rightNodeIndex of n =J

4. set current node = leftNodeIndex of n

FGPRA+:

Abdelwahab, N.
	

	

182	

182	

5. call yourself recursively with FGPRA+(current node) if leftNode was newly
formed and not TRUE or FALSE

6. set current node = rightNodeIndex of n
7. call yourself recursively with FGPRA+(current node) if rightNode was newly

formed and not TRUE or FALSE
8. return MSRTs.o

If size of n =1
! create MSRTs.o for this single clause as described in

Definition 2 step 1 if it is not already done
! return MSRTs.o.

Now we need to show the equivalence
between FGPRA+ and GSPRA+, i.e.,
that the same MSRTs.o is produced in
both cases.

Lemma 18: For any arbitrary 3-SAT-
CNF Clause-Set S: FGPRA+ (S)
=GSPRA+ (S).

Proof: (induction on M, the size of S)
Remembering that both algorithms use
CRA+ in their preparation phases on the
same S.

Base-Case: M=1: They convert C0 ∈ S
into the same MSRTs.o as prescribed in
Definition 2. Thus, FGPRA+ (S)
=GSPRA+ (S).

Induction Hypothesis:
For all 3-SAT-CNF Clause-Sets S of
size M: FGPRA+ (S) =GSPRA+ (S).

Induction Step: If S is of size M+1,
then it is sufficient to show that top-
parts of both MSRTs.os constructed by
GSPRA+ and FGPRA+ are equivalent,
then use the induction hypothesis for
the remainder. First note that Property 5
(Uniqueness of Instantiation Results) is
valid for FGPRA+ as it is for GSPRA+
because they both are SPR-like and use
the same least-literal/head-clause-
instantiation rule. This property states
that if S is a.a.124 (S1, S2 = any children
of S produced through instantiations of
literals i,j, respectively), then S1=S2 iff

124 i.e., also valid for l.o. Clause-Sets.

i=j. As both algorithms instantiate the
same C0 using the same rule, all literals
chosen for instantiation in the top-parts
of both final MSRTs.os must be equal,
thus Clause-Sets resulting from those
instantiations (to be resolved further in
the TBN bottom-parts) must per
Property 5 also be equal. We use the
induction hypothesis for all TBN M-
sized nodes and conclude that
FGPRA+(S) =GSPRA+ (S).
(Q.E.D.)

The following main lemma of this
paper paves the way to a new Solver
algorithm and Theorem 1.

Lemma 19: For the following
Assistance Operations125 used by
FGPRA+ on 3-SAT-CNF Clause-Set S
of size M: Node creation, MSRTs.o
creation for a single clause, CRA+,
Selecting a FirstClause, Forming new
Clause-Sets using least-literal-rule
(instantiation), Storing (nodes),
Searching Clause-Sets in LCS: The
total, worst case number of Primitive
Operations126 performed by any single
one of them during a run of FGPRA+ is:
O(M9) which therefore also represents
the complexity of FGPRA+.

125 By Assistance Operations we mean modules
and/or sub-functions used in the pseudo-code of
FGPRA+.
126 Primitive Operations take a constant amount
of time in the RAM computing model.

Abdelwahab, N.
	

	

183	

183	

Proof: Because of Lemma 13 and 18
we know that the total number of
unique-nodes in the final MSRTs.o
produced by FGPRA+ cannot exceed

3+ c*RCC3-SAT
2 *M4 + RCC3-SAT *M3.

The following are then upper bounds of
the total number of invocations of
Primitive Operations for all Assistance
Operations listed above:

1. 3+ c*RCC3-SAT
2 *M4 + RCC3-SAT

*M3 times CRA+ (each node needs
renaming in the worst case).
Through Lemma 6 it is known that
CRA+ takes O(M2(logM+N)). This
makes the total worst case number of
Primitive Operations of this
category: O(M6(logM+N).

2. 2*(3+ c*RCC3-SAT
2 *M4 + RCC3-SAT

*M3) times instantiation (two new
Clause-Sets are formed for each node
in the worst case). Instantiating a
Clause-Set by substituting values
TRUE or FALSE for a certain literal
in all M clauses is an operation in
O(M). This makes the total number
of Primitive Operations for
instantiation: O(M5).

3. 3+ c*RCC3-SAT
2 *M4 + RCC3-SAT

*M3 times selecting the first clause to
minimize top-parts using a procedure
which tries all permutations of
literals in a clause (RCC3-SAT in
number) for each clause, i.e., O(M)
taking the total number of Primitive
Operations to O(M5).

4. 3+ c*RCC3-SAT
2 *M4 + RCC3-SAT

*M3 times node creation assuming
that it is in O(c), i.e., O(M4).

5. 3+ c*RCC3-SAT
2 *M4 + RCC3-SAT

*M3 times Storing/Appending in/to
LCS assuming that it is in O(c), i.e.,
O(M4).

6. MSRTs.o creation for a single clause:
O(c), since independent of M any
clause can have at most 3 literals
where 3 nodes are created for each
one of them.

7. 3+ c*RCC3-SAT
2 *M4 + RCC3-SAT

*M3 times Searching Tuples in LCS.
This search operation can be
accomplished in the least efficient
way127 by comparing the sought
Clause-Set with all Clause-Sets
stored in the LCS using the
CompareSets algorithm of Section E-
2 which is O(M). In the worst case
there are 3+ c*RCC3-SAT

2 *M4 +
RCC3-SAT *M3 Clause-Sets in LCS,
i.e., O(M8) comparisons are needed.
This makes the total number of
Primitive Operations for Searching
O(M9).

(Q.E.D.)

127 The least efficient way is chosen to avoid
any assumptions regarding sort- and search
orders of Clause-Sets in LCS.

Abdelwahab, N.
	

	

184	

184	

The following algorithm (hereafter referred to as: Solver) uses FGPRA+ to produce the
answers TRUE or FALSE for any Set of arbitrary 3-SAT-CNF-clauses.

Solver:
Prerequisites:

- set MSRTs.o = FGPRA+(S)
- set current node = base-node of MSRTs.o
- call Solver with the current node

 Inputs: node of an MSRTs.o
Outputs: TRUE or FALSE

Steps for current node N in MSRTs.o:
- if N is leaf

o if -ve then
! Return FALSE

o if +ve then
! Stop giving TRUE

- if N not leaf
o set current node = leftnode of N in MSRTs.o
o call yourself recursively: Solver(current node)
o set current node = rightnode of N in MSRTs.o
o call yourself recursively: Solver(current node)

Step 4: stop giving FALSE

Theorem 1: For any Set of arbitrary
3-SAT-CNF-clauses of size M Solver
takes a polynomial number of steps
bounded by O(M9). Moreover: P=NP.

Proof: In the preparation phase, Solver
has to use FGPRA+ and (in the worst
case) has then to traverse all nodes of
the final MSRTs.o produced by it (which
is an operation in O(M4)). The result
follows immediately from Lemma 19.
Since 3-SAT is a NP-complete problem,
P=NP.
(Q.E.D.)

Thus, the formulated objective in
Section I has been attained.

In the last part of this section we show
that FGPRA+ is a polynomial 2-
Approximation algorithm for the
MinFBDD problem128. We conclude by

128 In [Seshia et al. 2000] the problem of
minimizing level i of a FBDD where the

affirming for any Boolean function the
existence of minimal FBDDs, which are
polynomial in M, the number of clauses.

Definition 17 (Approximation
Algorithms):
Let X be a minimization problem. Let ε
>0, and set ρ = 1+ε. An algorithm A is
called a ρ-approximation algorithm for
problem X, if for all instances I of X it

number of nodes is less than 2i-1 is shown to be
not approximable to within a factor of 2log^(ε-1) n
for any ε>0, unless the class NP is contained in
RQP (the class of all problems solvable in
random quasi-polynomial time). This is the
closest -ve result related to minimizing FBDDs
known to us. A 2-approximation algorithm like
the one shown here is not conclusive enough to
deduce the inclusion NP ⊆ RQP using this result
because it might still be the case that whatever
is lost in terms of minimization at level i is
compensated in other levels of the FBDD to
produce an overall 2-approximation.

Abdelwahab, N.
	

	

185	

185	

delivers a feasible solution with an
objective value A(I) such that:

|A(I) - Opt(I)| ≤ ε * Opt(I)

In this case, the value ρ is called the
performance guarantee or the worst-
case ratio of the approximation
algorithm A.

Theorem 2: Let f be a Boolean function
of N variables described by an a.a.
3-SAT-CNF Clause-Set S of size M.
MinFBDD is the problem of computing
a FBDD for f which has minimal size.
Then:

1- FGPRA+ is a 2-Approximation
Algorithm for MinFBDD.

2- f has a minimal FBDD with
polynomial number of nodes in M.

Proof:
First Claim: Suppose f has some
minimal FBDD1, then per Property 7(b)
there is a procedure PR (SPR-like- or
unlike) which uses variable orderings to
generate FBDD1. On the other hand,
FGPRA+ is per Lemma 19 a polynomial
time algorithm and produces per
Lemma 17 for S a FBDD2 which has
C <=CMin*(1+1/z) number of nodes for
some z>1, where CMin is the optimal
node-count produced by PR in FBDD1.
In general we can say that for any
instance I of MinFBDD (representing
any function f expressible in a.a. 3-
SAT-CNF form):

|FGPRA+(I) − Opt(I)| ≤ ε * Opt(I),
Opt(I)=CMin, ε=1/z, z>1, making

ρ=1+1/z<=2.

Therefore, FGPRA+ is a polynomial
time 2-approximation algorithm for
MinFBDD.

Second claim: Since C is in O(M4) per
Lemma 13 and CMin<=C we know that
both FBDD1 and FBDD2 must have a
polynomial count of unique nodes. As
for the time being we don’t have a clue
on how PR is calculating its optimal

FBDD1, we cannot conclude through
this direction that the MinFBDD
problem has an exact solution produced
by a polynomial algorithm129.
(Q.E.D.)

The conjecture formulated in Section
I is therefore proven.

III) Application: Solving Blocking
Sets Problems of Projective Plains
using FGPRA+
As early as [Bryant 1986] it is known
that practically important Boolean
functions such as Integer Multiplication
which are in P can also possess
exponentially sized OBDDs and
FBDDs.
Since FGPRA+ produces FBDDs and in
light of our new results, we are also
concerned with discussing exponential
lower bounds related to FBDDs (c.f.
[Ponzio 1998] for example).
The way of work of FGPRA+ imposes
yet another consideration, namely CNF-
compactness, i.e.: In case an input-
function to be resolved is already
expressed in exponentially many
clauses M (with respect to the number
of input variables N), FGPRA+ can only
produce, relative to N, exponentially big
FBDDs130. For example : Known CNF-
representations of Integer Multiplication
are exponentially long (including those
assumed in Bryant’s proof). This leaves
such a function out of discussion here.

129 Although Theorem 1 is essentially an
indication that PR can be efficient.
130 It is important to remember that the
complexity of an algorithm in P is bounded by a
polynomial function in the size of the input
(here represented by M, the number of clauses),
i.e., if any given input is already exponentially
big with respect to certain reference variables,
this doesn’t affect the asymptotic behavior of
the algorithm which will still produce a
polynomial function of that exponential size.

Abdelwahab, N.
	

	

186	

186	

There has been some work comparing
BDDs to CNF-representations.
However, they aren’t really comparable
in that there are functions with small
BDDs but exponential CNF-
representations (e.g., the odd parity
function, XOR) and vice-versa (c.f.
[Devadas 1993]).
The latter type of functions represents a
challenge to the ideas presented in this
paper. As per Lemma 13 and Theorems
1,2 it should be always the case that any
compact CNF-representation of a
Boolean function yields polynomial-
sized FBDDs. For Devadas' function,
the exponential-size result has been
proven for OBDDs and there is indeed a
polynomial-sized FBDD solving that
function. Are there problems for which
a compact CNF-representation has a
proven exponential lower bound for
FBDDs?

Yes.

In [Gal 1996], the function defined by
blocking sets of a finite projective plane

Definition 18: Let ∏ = (P, L) be a
projective plane of order q. (P is the
set of points and L is the set of lines,
viewed as subsets of P). Let
n=q2+q+l and m=q+l. So Abs(P) =
Abs(L) = n, each line has m points,
and each point is incident with m
lines.

is shown to have FBDDs of size
2^Ω(√n). This result practically says
that FBDDs constructed for blocking
Sets of PPs have their first q levels
equivalent to a complete binary tree.
How does FGPRA+ perform in the
blocking-sets-of-finite-projective-planes
case? Appendix A and B show runs of
FGPRA+ for planes of order q=2 (Fano)
and q=3 respectively (only first part of
the final FBDD is presented), whose
original problems are expressed in
3-SAT, 4-SAT Clause-Sets as follows:

PG2(2)
0 1 2
0 3 4
0 5 6
1 3 5
2 4 5
2 3 6

PG2(3)
0 1 2 3
0 4 5 6
0 8 9 12
0 7 10 11
1 4 7 8
1 6 9 11
1 5 10 12
3 4 9 10
2 4 11 12
2 5 7 9
3 6 7 12
3 5 8 11
2 6 8 10

Note the following observations:
In the k-SAT-representation of this
problem N (number of variables/literals)
and M (number of clauses) represent
number of points and lines (denoted in
Definition 18 as P and L), M=N=n. The
breadth of clauses k=m is the number of
points per line as well as intersecting
lines per point.
FGPRA+ utilizes a 3-SAT representation
of k-SAT clauses and uses CRA+ to
produce l.o. Base-Sets (c.f. Appendix
B) before resolving.
For all projective planes with q>=3 the
FBDDs generated by FGPRA+ do not
show a complete binary tree in the first
q levels (c.f. circled parts of the trees in
appendix B). This is mainly caused by
Property 8’ of FGPRA+. In addition to
that: Practical implementations of
FGPRA+ realized for q=3, M=51
clauses show a total number of nodes of
176,839 with polynomial growth
(O(M4) as predicted)131 illustrated in
following Fig. 58:

131 There are of course more efficient, not
necessarily equisatisfiable ways of translating
4SAT Clause Sets into 3Sat ones. For example
the transformation : {x1,x2,x3,x4} =>
{x1,x2,z1}{¬z1,x3,x4} yields only 26 Clauses and
2832 nodes for q=3

Abdelwahab, N.
	

	

187	

187	

Figure 58: The x-axis represents the number of
clauses where the y-axis represents the number
of nodes generated in the FBDD.

The final theorems of this paper use the
following practical definition of
compact CNF-representations.

Definition 19: A Boolean function f(N)
(for N = input variables) is said to
possess a k-SAT-CNF-compact-form if
the number of clauses M expressing f in
k-CNF is polynomial in N.

Theorem 3: The function defined by
blocking sets of a finite projective plane
(Definition 18) possesses a FBDD of
polynomial size. The number of nodes
of this FBDD is in O((q+1)4M4) with
M= number of points/lines, q order of
the plane.

Proof: Note first that the proof of the
exponential lower bound given in [Gal
1996] only holds under the assumption
that clauses represent complete lines:

"Proof of the theorem. We show
that for every q-element subset A of
the variables, N(f∏, A) = 2q holds,
i.e., each truth assignment to the
variables in A yields a different sub-
function on the remaining variables.
Since each line defines a clause

 of the function f∏, it follows
from the Fact[132] that for an arbitrary
q-element subset A of the variables
there exist q clauses such that each
variable from A appears in exactly
one of them, and each variable
appears in a different clause."133

When FGPRA+ converts the k-SAT
description to 3-SAT, this problem
structure dissolves and original
lines/clauses are split into smaller ones
not fulfilling the condition that "each
line defines a clause of the function"
described in the citation and crucial for
establishing the lower bound result.
Moreover, converting clauses to 3-SAT
in an equisatisfiable way produces for
each original line/clause m=q+1
additional "portions" at most (connected
using newly introduced
variables/literals) thus making the total
amount of clauses given to FGPRA+
(q+1)*M. Eventually, this fact along
with Lemma 13 explain O((q+1)4M4) as
the worst case for the number of nodes
in the FBDD constructed for this
problem by FGPRA+.
(Q.E.D)

132 Fact is a combinatorial property of
projective planes.
133 [Gal 1996] p.15

Abdelwahab, N.
	

	

188	

188	

It is highly probable that other
exponential lower bounds for functions
possessing a compact CNF which use
the following common observation for
Boolean functions in their proofs have
to be revised in the light of our results
in a way similar to Theorem 3, i.e.,
taking into consideration that the 3-SAT
formulation may destroy the assumed
clause-structure of f in the given
problem:

"Lemma: Let f be a Boolean function
of n variables. Assume that m is an
integer, 1 < m < n, if for m any m-
element subset Y of the variables
N(f, Y) = 2m holds134, then the size of
any read-once branching program
computing f is at least 2m -1."135

134 N(f,Y) denoting the number of different
sub-functions obtained under all possible
assignments to Y.
135 c.f. proof of this lemma in [Gal 1996]

Independent of that we can establish:

Theorem 4: Suppose a Boolean
function f possesses a compact CNF-
form, then it possesses FBDDs of
polynomial size in N as well as M (for
N = number of variables and M =
number of clauses).

Proof: Follows immediately from
Definition 19, Lemma 13 as well as
from Theorem 2.
(Q.E.D)

Abdelwahab, N.
	

	

189	

189	

VI) RESULTS AND DISCUSSION
Efforts to solve the NP-Problem have
been going on for decades. In the here
presented work, the inability to solve it
for so much time has been taking on
heuristically by considering the
contemporary computer scientific- and
mathematical paradigm as
inappropriate.136

A new paradigm is required.

In the context of the 3-SAT-problem,
we have introduced a constructive view
which identifies a variable with an
intrinsic logical truth pattern holding
information about its semantics and
interacting with similar ones to facilitate
calculating the desired overall truth
value of a formula in an efficient way.
We have shown that this new perception
divides 3-SAT-CNF-formulas into three
main types:

1. almost arbitrary (a.a.)
2. linearly ordered but unsorted (l.o.u.)
3. linearly ordered (l.o.).

New pattern-oriented algorithms (AP),
which are shown to be efficient, make
use of this distinction and of the
canonical ordering(s) induced by
renaming operations in respective sub-
problems. In addition, FBDDs
constructed by AP are near-to-minimal
with respect to all other possible
variable orderings. The first result
answers the P=NP question positively
while the second answers the open
question whether there are constant
approximation algorithms for the
MinFBDD problem positive as well.
Finally, the positive answer of this
second problem entails a practical result
showing that it is always possible for
compactly expressed Boolean functions

136 c.f. [Daghbouche 2012 (1)]

to construct near-to-minimal FBDDs
with polynomial number of nodes.
As per the introduction, the work
presented in this paper is inspired by
ideas originating from ancient Muslim
scientists who effectively built their
theoretical and practical insights to
serve humanity.

They must have truly believed in the
epistemological statement:

"[…] of knowledge it is only a little that
is communicated to you […]" 137

It motivated ancient Muslim scientists
to keep looking for practical solutions
even for seemingly hard problems.
Ultimately, human knowledge is not a
reflection of ontological reality, but a
matter of subjective perception.138

137 Quran: Al-Israa, 85
138 c.f. [Daghbouche 2012 (2)]

Abdelwahab, N.
	

	

190	

190	

ACKNOWLEDGEMENT

I would like to thank Menassie Ephrem
for his valuable feedback, revisions of
definitions, and proofs in the Sections
II, A and B.
My deepest thanks go to my family, to
my mother Nadra Shannan and father
Mahmoud Abdelwahab and to my
brother and sister for their continuous
moral support.
This paper would not have been
possible without the continuous
motivation and the dedicated effort
provided by my friend and brother
Karim Daghbouche whose sound
epistemological framework and fruitful
discussions were of mission-critical
value in pursuing and précising the
approach to finally reflect the
theoretical and practical results.
This work is dedicated to my beautiful
wife and children wishing they could
forgive me my way too long, unexcused
absence.

REFERENCES
[Abdelwahab 1986]: Elnaser
Abdelwahab, A simple expert System for
Arabic Morphology, BSC Thesis, King
Abdulaziz University, KSA, 1986

[Abdelwahab et al. 2014]:
Elnaserledinellah Mahmood
Abdelwahab, Karim Daghbouche,
Nadra Ahmad Shannan, The Algorithm
of Islamic Jurisprudence (Fiqh) with
Validation of an Entscheidungsproblem,
J. Acad. (N.Y.) 2014, Vol. 4, 2:52-87

[AlGhazali 505H]: Al-Ghazali, al-
Mustafa min ‘ilm al-usul (The
Essentials of the Islamic Legal Theory),
Cairo: al-Matba'ah al-Amiriyyah, 1904-
1906

[Attia 2008]: Mohammad A. Attia,
Handling Arabic Morphological and
Syntactic Ambiguity within the LFG
Framework with a View to Machine
Translation, Thesis, University of
Manchester

[Berwick 1982]: Robert Berwick,
Computational Complexity and Lexical
Functional Grammar, American Journal
of Computational Linguistics, 8.20-23,
1982

[Bolling et al. 1996]: Bollig, B.;
Wegener, I., Improving the Variable
Ordering of OBDDs is NP-Complete,
IEEE Transactions on Computers, Vol.
45, 1996

[Bryant 1986]: Randal Bryant, Graph-
Based Algorithms for Boolean Function
Manipulation, IEEE Transactions on
Computers, C-35-8, pp. 677-691,
August, 1986

[Daghbouche 2012 (1)]: Karim
Daghbouche, The Heuristic Principle of
Inability with an Application on the Set
Theoretical Linear Continuum, J. Acad.
(N.Y.) 2012, Vol. 2, 1:3-20

[Daghbouche 2012 (2)]: Karim
Daghbouche, The Ontological
Principle, J. Acad. (N.Y.) 2012, Vol. 2,
4:160-163

[Devadas 1993]: Devadas, S.,
Comparing two-level and ordered
binary decision diagram
representations of logic functions,
Computer-Aided Design of Integrated
Circuits and Systems, IEEE
Transactions, Vol. 12:5

Abdelwahab, N.
	

	

191	

191	

[Gal 1996]: Anna Gal, A simple
function that requires exponential size
read-once branching programs,
Information Processing Letters 62
(1997) 13-16

[Guenther et al. 1999]: Wolfgang
Guenther, Rolf Drechsler, Minimization
of Free BDDs, Asia and South Pacific
Design Automation Conference (ASP-
DAC’99), pp. 323-326

[Ibn Malek 1274]: Alfiya is a rhymed
book of Arabic grammar written by Ibn
Malik in the 13th century. The long title
is al-Khulāsa al-alfiyya. At least 43
commentaries have been written on this
work, which was one of two major
foundations of a beginner's education in
Arab societies until the 20th century

[Lukasiewicz 1951]: Jan Lukasiewicz,
Aristotle’s Syllogistic from the
Standpoint of Modern Formal Logic,
Clarendon Press, Oxford, 1951

[Neidel 1994]: Carol Neidel, Lexical
Functional Grammar. In: Encyclopedia
of Language and Linguistics. New
York, Pergamon Press, 2147-2153.
Reprinted in K. Brown and J. Miller
(eds.) (1996) Concise Encyclopedia of
Syntactic Theories. Oxford: Elsevier

[Ponzio 1998]: Stephen Ponzio, A
Lower Bound for Integer Multiplication
with Read-Once Branching Programs,
SIAM J. Comput., 28(3), 798-815

[Russell 1910]: Whitehead, Alfred
North, Russell, Bertrand, Principia
Mathematica, Cambridge University
Press, 2nd edition, 1963

[Seshia et al. 2000]: S.A. Seshia, R. E.
Bryant, The Hardness of Approximating
Minima in OBDDs, FBDDs and
Boolean Functions, School of Computer
Science, Carnegie Mellon University,
Pittsburgh, PA 15213, research report
August 2000 CMU-CS-00-156

[Sieling 1999]: Detlef Sieling, The
Complexity of Minimizing FBDDs,
Electronic Colloquium on
Computational Complexity, Report
No. 1 (1999)

[Tani et al. 1993]: Tani, S., Hamaguchi,
K., The Complexity of the Optimal
Variable Ordering Problems of Shared
Binary Decision Diagrams, Proceedings
of the 4th International Symposium on
Algorithms and Computation, 1993

[Wegener 2000]: Ingo Wegener,
Branching Programs and Binary
Decision Diagrams, Theory and
Applications, SIAM 2000

Abdelwahab, N.
	

	

192	

192	

APPENDIX

A) Fano Plane, PG2(2),S={0,1,2}{0,3,4}{0,5,6}{1,3,5}{1,4,6}{2,3,6}{2,4,5},S is l.o.

Abdelwahab, N.
	

	

193	

193	

B) PG2(3)

After conversion to 3-SAT: N=63 variables, M=51 clauses:
S={{0,1,2!}{0,3,4!}{0,5,6!}{0,7,8!}{1,3,9!}{1,10,11!}{1,12,13!}{2,14,15!}{3,16,17!}
{3,18,19!}{4,20,21!}{5,7,22!}{5,23,24!}{5,25,26!}{6,27,28!}{7,29,30!}{7,31,32!}{8,
33,34!}
{9,22,35!}{10,12,20!}{10,16,36!}{10,18,37!}{11,38,39!}{12,16,40!}{12,18,41!}{13,4
2,43!}
{14!,16,18}{15,21,44!}{17,45,46!}{19,47,48!}{23,25,33!}{23,29,47!}{23,31,38!}{24,
40,49!}
{25,29,42!}{25,31,45!}{26,37,50!}{27!,29,31}{28,34,51!}{30,36,52!}{32,41,53!}{35,
43,54!}
{39,48,55!}{44,51,56!}{46,52,57!}{49,58,59!}{50,53,60!}{54,44,61!}{56,61,62!}{57,
58!,60}
{59,62}}. S is l.o.
The conversion is done in the following way. The Clause
(A[1] or A[2] or A[3] or A[4] or A[5] or A[6] or A[7])
yields the following set of clauses.
(A[1] or A[2] or ~X[1])
(A[3] or A[4] or ~X[2])
(A[5] or A[6] or ~X[3])
(X[1] or X[2] or X[3] or A[7])
The last clause is not 3-sat so the algorithm is re-run on this last clause, yielding the
following new clauses:
(X[1] or X[2] or ~Y[1])
(X[3] or A[7] or ~Y[2])
(Y[1] or Y[2])

(developed for illustration stepwise from M=4 to until M=8 only)

Abdelwahab, N.
	

	

194	

194	

Abdelwahab, N.
	

	

195	

195	

Abdelwahab, N.
	

	

196	

196	

Abdelwahab, N.
	

	

197	

197	

Abdelwahab, N.
	

	

198	

198	

